19 research outputs found

    Creative thinking and brain network development in schoolchildren.

    Get PDF
    Fostering creative minds has always been a premise to ensure adaptation to new challenges of human civilization. While some alternative educational settings (i.e., Montessori) were shown to nurture creative skills, it is unknown how they impact underlying brain mechanisms across the school years. This study assessed creative thinking and resting-state functional connectivity via fMRI in 75 children (4-18 y.o.) enrolled either in Montessori or traditional schools. We found that pedagogy significantly influenced creative performance and underlying brain networks. Replicating past work, Montessori-schooled children showed higher scores on creative thinking tests. Using static functional connectivity analysis, we found that Montessori-schooled children showed decreased within-network functional connectivity of the salience network. Moreover, using dynamic functional connectivity, we found that traditionally-schooled children spent more time in a brain state characterized by high intra-default mode network connectivity. These findings suggest that pedagogy may influence brain networks relevant to creative thinking-particularly the default and salience networks. Further research is needed, like a longitudinal study, to verify these results given the implications for educational practitioners. A video abstract of this article can be viewed at https://www.youtube.com/watch?v=xWV_5o8wB5g . RESEARCH HIGHLIGHTS: Most executive jobs are prospected to be obsolete within several decades, so creative skills are seen as essential for the near future. School experience has been shown to play a role in creativity development, however, the underlying brain mechanisms remained under-investigated yet. Seventy-five 4-18 years-old children, from Montessori or traditional schools, performed a creativity task at the behavioral level, and a 6-min resting-state MR scan. We uniquely report preliminary evidence for the impact of pedagogy on functional brain networks

    Whole-genome sequencing in diverse subjects identifies genetic correlates of leukocyte traits: The NHLBI TOPMed program

    Get PDF
    Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs

    Planning considerations related to the organic contamination of martian samples and implications for the Mars 2020 rover

    Get PDF
    © Copyright 2014, Mary Ann Liebert, Inc. Data gathered during recent NASA missions to Mars, particularly by the Rovers Spirit, Opportunity, and Curiosity, have provided important insights into the past history and habitability of the Red Planet. The Mars science community, via input through the National Research Council (NRC) Planetary Science Decadal Survey Committee, also identified the prime importance of a Mars sample return (MSR) mission to further exploration of the Red Planet. In response, the Mars 2020 Mission (Mars 2020) Science Definition Team (SDT) (Mustard et al., 2013) was chartered by the NASA Mars Exploration Program to formulate a new rover mission that would take concrete steps toward an eventual sample return. The SDT recommended that the 2020 rover should select and cache scientifically compelling samples for possible return to Earth. They also noted that organic contamination of the samples was a significant and complex issue that should be independently investigated by a future committee. Accordingly, NASA chartered the Mars 2020 Organic Contamination Panel (OCP). The OCP was charged with evaluating and recommending sample contamination requirements for the proposed Mars 2020. A further task was to assess implementation approaches in support of the investigation of broad scientific questions concerning the history and habitability of Mars. Central to these objectives would be the ability to reliably differentiate indigenous martian organic molecules from terrestrial contamination in any future samples returned from Mars. Early on during its deliberations, the OCP recognized that the scientific and planetary protection (PP) objectives of MSR are intimately linked, in that both rely heavily on measurements of organic molecules in the returned samples. In each case, a key aspect of the problem is being able to recognize and interpret organic molecules as indigenous to Mars against a potential background of Earthsourced contamination. It was within this context that the OCP committee considered the structure for a set of measurement goals related to organic molecules in the returned samples that would be of common interest to science and PP. The following is a summary of the most significant findings of the OCP regarding organic geochemical measurements that would be shared for both science and PP in relation to potential future MSR
    corecore