168 research outputs found

    An Effect of Relative Motion on Trajectory Discrimination

    Get PDF
    Psychophysical studies point to the existence of specialized mechanisms sensitive to the relative motion between an object and its background. Such mechanisms would seem ideal for the motion-based segmentation of objects; however, their properties and role in processing the visual scene remain unclear. Here we examine the contribution of relative motion mechanisms to the processing of object trajectory. In a series of four psychophysical experiments we examine systematically the effects of relative direction and speed differences on the perceived trajectory of an object against a moving background. We show that background motion systematically influences the discrimination of object direction. Subjects’ ability to discriminate direction was consistently better for objects moving opposite a translating background than for objects moving in the same direction as the background. This effect was limited to the case of a translating background and did not affect perceived trajectory for more complex background motions associated with self-motion. We interpret these differences as providing support for the role of relative motion mechanisms in the segmentation and representation of object motions that do not occlude the path of an observer’s self-motion

    Within-Subject Joint Independent Component Analysis of Simultaneous fMRI/ERP in an Auditory Oddball Paradigm

    Get PDF
    The integration of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) can contribute to characterizing neural networks with high temporal and spatial resolution. This research aimed to determine the sensitivity and limitations of applying joint independent component analysis (jICA) within-subjects, for ERP and fMRI data collected simultaneously in a parametric auditory frequency oddball paradigm. In a group of 20 subjects, an increase in ERP peak amplitude ranging 1–8 μV in the time window of the P300 (350–700 ms), and a correlated increase in fMRI signal in a network of regions including the right superior temporal and supramarginal gyri, was observed with the increase in deviant frequency difference. JICA of the same ERP and fMRI group data revealed activity in a similar network, albeit with stronger amplitude and larger extent. In addition, activity in the left pre- and post-central gyri, likely associated with right hand somato-motor response, was observed only with the jICA approach. Within-subject, the jICA approach revealed significantly stronger and more extensive activity in the brain regions associated with the auditory P300 than the P300 linear regression analysis. The results suggest that with the incorporation of spatial and temporal information from both imaging modalities, jICA may be a more sensitive method for extracting common sources of activity between ERP and fMRI

    Age-related differentiation of sensorimotor control strategies during pursuit and compensatory tracking

    Get PDF
    Motor control deficits during aging have been well-documented. Various causes of neuromotor decline, including both peripheral and central neurological deficits, have been hypothesized. Here, we use a model of closed-loop sensorimotor control to examine the functional causes of motor control deficits during aging. We recruited 14 subjects aged 19-61 years old to participate in a study in which they performed single-joint compensatory and pursuit tracking tasks with their dominant hand. We found that visual response delay and visual noise increased with age, while reliance on visual feedback, especially during compensatory tracking decreased. Increases in visual noise were also positively correlated with increases in movement error during a reach and hold task. The results suggest an increase in noise within the visuomotor control system may contribute to the decline in motor performance during early aging

    Visual and Proprioceptive Contributions to Compensatory and Pursuit Tracking Movements in Humans

    Get PDF
    An ongoing debate in the field of motor control considers how the brain uses sensory information to guide the formation of motor commands to regulate movement accuracy. Recent research has shown that the brain may use visual and proprioceptive information differently for stabilization of limb posture (compensatory movements) and for controlling goal-directed limb trajectory (pursuit movements). Using a series of five experiments and linear systems identification techniques, we modeled and estimated the sensorimotor control parameters that characterize the human motor response to kinematic performance errors during continuous compensatory and pursuit tracking tasks. Our findings further support the idea that pursuit and compensatory movements of the limbs are differentially controlled

    Intention Tremor and Deficits of Sensory Feedback Control in Multiple Sclerosis: a Pilot Study

    Get PDF
    Background Intention tremor and dysmetria are leading causes of upper extremity disability in Multiple Sclerosis (MS). The development of effective therapies to reduce tremor and dysmetria is hampered by insufficient understanding of how the distributed, multi-focal lesions associated with MS impact sensorimotor control in the brain. Here we describe a systems-level approach to characterizing sensorimotor control and use this approach to examine how sensory and motor processes are differentially impacted by MS. Methods Eight subjects with MS and eight age- and gender-matched healthy control subjects performed visually-guided flexion/extension tasks about the elbow to characterize a sensory feedback control model that includes three sensory feedback pathways (one for vision, another for proprioception and a third providing an internal prediction of the sensory consequences of action). The model allows us to characterize impairments in sensory feedback control that contributed to each MS subject’s tremor. Results Models derived from MS subject performance differed from those obtained for control subjects in two ways. First, subjects with MS exhibited markedly increased visual feedback delays, which were uncompensated by internal adaptive mechanisms; stabilization performance in individuals with the longest delays differed most from control subject performance. Second, subjects with MS exhibited misestimates of arm dynamics in a way that was correlated with tremor power. Subject-specific models accurately predicted kinematic performance in a reach and hold task for neurologically-intact control subjects while simulated performance of MS patients had shorter movement intervals and larger endpoint errors than actual subject responses. This difference between simulated and actual performance is consistent with a strategic compensatory trade-off of movement speed for endpoint accuracy. Conclusions Our results suggest that tremor and dysmetria may be caused by limitations in the brain’s ability to adapt sensory feedback mechanisms to compensate for increases in visual information processing time, as well as by errors in compensatory adaptations of internal estimates of arm dynamics

    Different Motion Cues Are Used to Estimate Time-to-arrival for Frontoparallel and Loming Trajectories

    Get PDF
    Estimation of time-to-arrival for moving objects is critical to obstacle interception and avoidance, as well as to timing actions such as reaching and grasping moving objects. The source of motion information that conveys arrival time varies with the trajectory of the object raising the question of whether multiple context-dependent mechanisms are involved in this computation. To address this question we conducted a series of psychophysical studies to measure observers’ performance on time-to-arrival estimation when object trajectory was specified by angular motion (“gap closure” trajectories in the frontoparallel plane), looming (colliding trajectories, TTC) or both (passage courses, TTP). We measured performance of time-to-arrival judgments in the presence of irrelevant motion, in which a perpendicular motion vector was added to the object trajectory. Data were compared to models of expected performance based on the use of different components of optical information. Our results demonstrate that for gap closure, performance depended only on the angular motion, whereas for TTC and TTP, both angular and looming motion affected performance. This dissociation of inputs suggests that gap closures are mediated by a separate mechanism than that used for the detection of time-to-collision and time-to-passage. We show that existing models of TTC and TTP estimation make systematic errors in predicting subject performance, and suggest that a model which weights motion cues by their relative time-to-arrival provides a better account of performance

    A Modular Low-clearance Wrist Orthosis for Improving Wrist Motion in Children with Cerebral Palsy

    Get PDF
    Children with Cerebral Palsy (CP) often exhibit impairments in the coordination of the grip and lift phases of arm movements that directly impact their ability to perform activities of daily living (ADLs). The application of assistive robotic therapy to children with spastic hemiplegic CP has shown that augmented movement training can lead to improved functional outcomes and improved arm kinematics. Assistive robotic therapy of the wrist has been shown to help improve motor skills in stroke patients, but the devices employed are often large and obtrusive, focusing on a repeated motion rather than a task-based itinerary. Here, we propose a lightweight low clearance wrist orthosis for use in children with Cerebral Palsy that actuates pronation/supination and flexion/extension of the wrist

    Computational Characterization of the Cellular Origins of Electroencephalography

    Get PDF
    Despite the widespread use of Electroecephalography (EEG) as an imaging modality, neural generators of current dipoles measured by EEG at the scalp are not fully understood. Here, we use two morphologically accurate multicompartments neuron models (layer IV pyramidal cell and layer V spiny stellate cell) to characterize how spiking neurons generate current dipoles in response to synaptic input. The simulations indicate that the dipole generated by synaptic inputs required to drive a pyramidal cell to threshold is smaller than the dipole associated the action potential itself. These results suggest a greater role of spiking neural activity toward EEG signals measured at the scalp than typically assumed

    Within-socket Myoelectric Prediction of Continuous Ankle Kinematics for Control of a Powered Transtibial Prosthesis

    Get PDF
    Objective. Powered robotic prostheses create a need for natural-feeling user interfaces and robust control schemes. Here, we examined the ability of a nonlinear autoregressive model to continuously map the kinematics of a transtibial prosthesis and electromyographic (EMG) activity recorded within socket to the future estimates of the prosthetic ankle angle in three transtibial amputees. Approach. Model performance was examined across subjects during level treadmill ambulation as a function of the size of the EMG sampling window and the temporal \u27prediction\u27 interval between the EMG/kinematic input and the model\u27s estimate of future ankle angle to characterize the trade-off between model error, sampling window and prediction interval. Main results. Across subjects, deviations in the estimated ankle angle from the actual movement were robust to variations in the EMG sampling window and increased systematically with prediction interval. For prediction intervals up to 150 ms, the average error in the model estimate of ankle angle across the gait cycle was less than 6°. EMG contributions to the model prediction varied across subjects but were consistently localized to the transitions to/from single to double limb support and captured variations from the typical ankle kinematics during level walking. Significance. The use of an autoregressive modeling approach to continuously predict joint kinematics using natural residual muscle activity provides opportunities for direct (transparent) control of a prosthetic joint by the user. The model\u27s predictive capability could prove particularly useful for overcoming delays in signal processing and actuation of the prosthesis, providing a more biomimetic ankle response
    • …
    corecore