17,972 research outputs found

    Global demographic change : some implications for central banks : overview panel

    Get PDF
    Population ; Banks and banking, Central

    Cosmological Acceleration Through Transition to Constant Scalar Curvature

    Get PDF
    As shown by Parker and Raval, quantum field theory in curved spacetime gives a possible mechanism for explaining the observed recent acceleration of the universe. This mechanism, which differs in its dynamics from quintessence models, causes the universe to make a transition to an accelerating expansion in which the scalar curvature, R, of spacetime remains constant. This transition occurs despite the fact that we set the renormalized cosmological constant to zero. We show that this model agrees very well with the current observed type-Ia supernova (SNe-Ia) data. There are no free parameters in this fit, as the relevant observables are determined independently by means of the current cosmic microwave background radiation (CMBR) data. We also give the predicted curves for number count tests and for the ratio, w(z), of the dark energy pressure to its density, as well as for dw(z)/dz versus w(z). These curves differ significantly from those obtained from a cosmological constant, and will be tested by planned future observations.Comment: 31 pages, 7 figures; to appear in ApJ. Corrected numerical results; described quantum basis of theory; 18 references added; 2 figures adde

    Cosmology from String Theory

    Full text link
    We explore the cosmological content of Salam-Sezgin six dimensional supergravity, and find a solution to the field equations in qualitative agreement with observation of distant supernovae, primordial nucleosynthesis abundances, and recent measurements of the cosmic microwave background. The carrier of the acceleration in the present de Sitter epoch is a quintessence field slowly rolling down its exponential potential. Intrinsic to this model is a second modulus which is automatically stabilized and acts as a source of cold dark matter with a mass proportional to an exponential function of the quintessence field (hence realizing VAMP models within a String context). However, any attempt to saturate the present cold dark matter component in this manner leads to unacceptable deviations from cosmological data -- a numerical study reveals that this source can account for up to about 7% of the total cold dark matter budget. We also show that (1) the model will support a de Sitter energy in agreement with observation at the expense of a miniscule breaking of supersymmetry in the compact space; (2) variations in the fine structure constant are controlled by the stabilized modulus and are negligible; (3) ``fifth''forces are carried by the stabilized modulus and are short range; (4) the long time behavior of the model in four dimensions is that of a Robertson-Walker universe with a constant expansion rate (w = -1/3). Finally, we present a String theory background by lifting our six dimensional cosmological solution to ten dimensions.Comment: Version to be published in Physical Review

    Cosmological quintessence accretion onto primordial black holes : conditions for their growth to the supermassive scale

    Full text link
    In this work we revisit the growth of small primordial black holes (PBHs) immersed in a quintessential field and/or radiation to the supermassive black hole (SMBHs) scale. We show the difficulties of scenarios in which such huge growth is possible. For that purpose we evaluated analytical solutions of the differential equations (describing mass evolution) and point out the strong fine tuning for that conclusions. The timescale for growth in a model with a constant quintessence flux is calculated and we show that it is much bigger than the Hubble time.The fractional gain of the mass is further evaluated in other forms, including quintessence and/or radiation. We calculate the cosmological density Ω\Omega due to quintessence necessary to grow BHs to the supermassive range and show it to be much bigger than one. We also describe the set of complete equations analyzing the evolution of the BH+quintessence universe, showing some interesting effects such the quenching of the BH mass growth due to the evolution of the background energy. Additional constraints obtained by using the Holographic Bound are also described. The general equilibrium conditions for evaporating/accreting black holes evolving in a quintessence/radiation universe are discussed in the Appendix.Comment: 21 pp., 2 Figures, To appear in IJMP

    To Harold W. Doty

    Get PDF

    Field Induced Nodal Order Parameter in the Tunneling Spectrum of YBa2_2Cu3_3O7x_{7-x} Superconductor

    Full text link
    We report planar tunneling measurements on thin films of YBa2_2Cu3_3O7x_{7-x} at various doping levels under magnetic fields. By choosing a special setup configuration, we have probed a field induced energy scale that dominates in the vicinity of a node of the d-wave superconducting order parameter. We found a high doping sensitivity for this energy scale. At Optimum doping this energy scale is in agreement with an induced idxyid_{xy} order parameter. We found that it can be followed down to low fields at optimum doping, but not away from it.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.

    Le chômage en Europe : conclusions d’une analyse économétrique multinationale

    Get PDF
    Cet article résume les principales conclusions empiriques du European Unemployment Program. Il se base sur dix études nationales qui utilisent le cadre macroéconomique développé par Sneessens et Drèze (1986). Les principales conclusions sont les suivantes : (i) un problème majeur de l’Europe résulte de ce que les gains de productivité sont absorbés rapidement dans les salaires tandis que l’incidence du chômage sur les accords salariaux est généralement faible; (ii) la spirale salaires-prix-productivité rend les économies européennes vulnérables à l’inflation; (iii) la tension de la demande se résorbe par la balance des paiements plutôt que par des hausses de prix; (iv) le principal déterminant immédiat de l’emploi dans les années quatre-vingt est le niveau de la demande effective.The paper summarizes the principal empirical findings of the European Unemployment Program. It draws on 10 country studies which utilize the macroeconomic framework set out by Sneessens and Drèze (1986). The main conclusions are as follows: (i) a major problem in Europe is that productivity gains are quickly absorbed into wages and the effect of unemployment on wage settlements is generally weak; (ii) a wage-price-productivity spiral means the European economies are inflation-prone; (iii) demand pressures spill over into the balance of payments rather than leading to price increases; (iv) the major proximate determinant of employment in the 1980s is the level of effective demand

    The Adiabatic Instability on Cosmology's Dark Side

    Full text link
    We consider theories with a nontrivial coupling between the matter and dark energy sectors. We describe a small scale instability that can occur in such models when the coupling is strong compared to gravity, generalizing and correcting earlier treatments. The instability is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid. Our results are general, and applicable to a wide class of coupled models and provide a powerful, redshift-dependent tool, complementary to other constraints, with which to rule many of them out. A detailed analysis and applications to a range of models are presented in a longer companion paper.Comment: 4 pages, 1 figur

    To McNary from Public Works

    Get PDF

    Vector magnetic hysteresis of hard superconductors

    Full text link
    Critical state problems which incorporate more than one component for the magnetization vector of hard superconductors are investigated. The theory is based on the minimization of a cost functional C[H(x)]{\cal C}[\vec{H}(\vec{x})] which weighs the changes of the magnetic field vector within the sample. We show that Bean's simplest prescription of choosing the correct sign for the critical current density JcJ_c in one dimensional problems is just a particular case of finding the components of the vector Jc\vec{J}_c. Jc\vec{J}_c is determined by minimizing C{\cal C} under the constraint JΔ(H,x)\vec{J}\in\Delta (\vec{H},\vec{x}), with Δ\Delta a bounded set. Upon the selection of different sets Δ\Delta we discuss existing crossed field measurements and predict new observable features. It is shown that a complex behavior in the magnetization curves may be controlled by a single external parameter, i.e.: the maximum value of the applied magnetic field HmH_m.Comment: 10 pages, 9 figures, accepted in Phys. Rev.
    corecore