885 research outputs found
Recommended from our members
SLS Materials Development Method for Rapid Manufacturing
As soon as SFF technology development began to make Rapid Prototyping possible the
interest in Rapid Manufacturing (RM) began to grow. The advantages in terms of
functional integration, elimination of tooling and fixtures and mass customization make a
compelling case for RM, leading some in the field to call it the next industrial revolution.
Yet without the materials properties necessary to provide the function and variety
currently available from mass production methods, the application of RM will remain
limited. Developing new materials for the SLS process, one immediate step toward a
larger portfolio of RM materials, is very challenging. The formation of high quality SLS
parts relies on appropriate powder characteristics, thermal cycles and sintering behavior.
Based on a brief examination of the key factors in SLS processing and a research project
to develop a new binder material for Silicon Carbide composites, a systematic materials
development method is proposed in this paper. The method provides guidance for
introducing new SLS materials, support for educating new SLS users and researchers and
direction for several future research projects.Mechanical Engineerin
Recommended from our members
Rapid Manufacturing of Silicon Carbide Composites
From the earliest days of SFF technology development, a viable technique for the direct
manufacture of fully-functional parts has been a major technology goal. While direct metal
methods have been demonstrated for a variety of metals including aluminum, steel and titanium,
they have not reached wide commercial application due to processing speed, final material
properties and surface finish. In this paper the development of an SLS-based rapid
manufacturing (RM) platform is reviewed. The core of this platform is a thermosetting binder
system for preform parts in contrast to the thermoplastic materials currently available for SLS.
The preforms may include metal and/or ceramic powders. A variety of fully functional parts
can be prepared from different combinations of materials and post processing steps including
binder pyrolysis, free-standing alloy infiltration, room temperature polymer infiltration and
machining. The main issues of these steps are reviewed followed by a discussion about the
support of RM. This paper is an intermediate report additional materials, applications, process
models and product design strategies will be incorporated into the project in the next year.Mechanical Engineerin
Recommended from our members
Reaction Bonded Silicon Carbide: SFF, Process Refinement and Applications
Reaction bonded silicon carbide (RBSiC) has a wide variety of industrial applications and
a manufacturing process based on Selective Laser Sintering (SLS) has been demonstrated in
previous research at the University of Texas. That study was directed toward semiconductor
manufacturing applications and was based on prior indirect SLS methods. Several key research
questions were addressed for three main manufacturing phases: preform SLS, binder burnout and
reactive infiltration. The current research is focused on development of material systems and
manufacturing capability and is directed toward a broader set of potential applications. Preform
formation utilizes SiC powder of an appropriate average particle size mixed with a multicomponent binder. The preform or green part is then placed in a vacuum furnace to carbonize
the binder. The details of the binder chemistry must support accurate SFF shapes and acceptable
surface roughness, a strong green part and maintenance of the part shape during the first furnace
operation. Finally, the physics and chemistry of the infiltration process, based on the
microstructure of the initial green preform, determine the viability of the manufacturing process
and the characteristics of the final composite material.
The functionality of metal, polymer and ceramic matrix composites can support the
growing SFF industry desire to move beyond functional prototyping and into manufacturing
arenas. This project is being explored for more general application to matrix composite
materials, especially highly functional systems tailored specifically for SLS. The goal is to
establish the governing principles of binder function, carbonization and infiltration as well as to
understand the interdependence of these phases in terms of manufacturing application. With this
understanding new applications and special SLS composites can support the development of new
products and a greater SFF manufacturing presence.
This paper provides an introduction to the material, a look at basic rapid manufacturing
trends, an overview of the previous work, a review of relevant RBSiC material science issues,
and an outline of the current study.Mechanical Engineerin
Recommended from our members
Multiple material systems for selective beam sintering
A method and apparatus for selectively sintering a layer of powder to produce a part comprising a plurality of sintered layers. The apparatus includes a computer controlling a laser to direct the laser energy onto the powder to produce a sintered mass. The computer either determines or is programmed with the boundaries of the desired cross-sectional regions of the part. For each cross-section, the aim of the laser beam is scanned over a layer of powder and the beam is switched on to sinter only the powder within the boundaries of the cross-section. Powder is applied and successive layers sintered until a completed part is formed. Preferably, the powder comprises a plurality of materials having different dissociation or bonding temperatures. The powder preferably comprises blended or coated materials.Board of Regents, University of Texas Syste
Location, location, location: utilizing pipelines and services to more effectively georeference the world's biodiversity data
Abstract Background Increasing the quantity and quality of data is a key goal of biodiversity informatics, leading to increased fitness for use in scientific research and beyond. This goal is impeded by a legacy of geographic locality descriptions associated with biodiversity records that are often heterogeneous and not in a map-ready format. The biodiversity informatics community has developed best practices and tools that provide the means to do retrospective georeferencing (e.g., the BioGeomancer toolkit), a process that converts heterogeneous descriptions into geographic coordinates and a measurement of spatial uncertainty. Even with these methods and tools, data publishers are faced with the immensely time-consuming task of vetting georeferenced localities. Furthermore, it is likely that overlap in georeferencing effort is occurring across data publishers. Solutions are needed that help publishers more effectively georeference their records, verify their quality, and eliminate the duplication of effort across publishers. Results We have developed a tool called BioGeoBIF, which incorporates the high throughput and standardized georeferencing methods of BioGeomancer into a beginning-to-end workflow. Custodians who publish their data to the Global Biodiversity Information Facility (GBIF) can use this system to improve the quantity and quality of their georeferences. BioGeoBIF harvests records directly from the publishers' access points, georeferences the records using the BioGeomancer web-service, and makes results available to data managers for inclusion at the source. Using a web-based, password-protected, group management system for each data publisher, we leave data ownership, management, and vetting responsibilities with the managers and collaborators of each data set. We also minimize the georeferencing task, by combining and storing unique textual localities from all registered data access points, and dynamically linking that information to the password protected record information for each publisher. Conclusion We have developed one of the first examples of services that can help create higher quality data for publishers mediated through the Global Biodiversity Information Facility and its data portal. This service is one step towards solving many problems of data quality in the growing field of biodiversity informatics. We envision future improvements to our service that include faster results returns and inclusion of more georeferencing engines
Recommended from our members
Multiple Input Electrode Gap Control During Vacuum Arc Remelting
Accurate control of the electrode gap in a vacuum arc remelting (VAR) furnace has been a goal of melters for many years. The size of the electrode gap has a direct influence on ingot solidification structure. At the high melting currents (30 to 40 kA) typically used for VAR of segregation insensitive Ti and Zr alloys, process voltage is used as an indicator of electrode gap, whereas drip-short frequency (or period) is usually used at the lower currents (5 to 8 kA) employed during VAR of superalloys. Modem controllers adjust electrode position or drive velocity to maintain a voltage or drip-short frequency (or period) set-point. Because these responses are non-linear functions of electrode gap and melting current, these controllers have a limited range for which the feedback gains are valid. Models are available that relate process voltage and drip-short frequency to electrode gap. These relationships may be used to linearize the controller feedback signal. An estimate of electrode gap may then be obtained by forming a weighted sum of the independent gap estimates obtained from the voltage and drip-short signals. By using multiple independent measures to estimate the gap, a controller that is less susceptible to process disturbances can be developed. Such a controller was designed, built and tested. The tests were carried out at Allvac Corporation during VAR of 12Cr steel at intermediate current levels
Towards a collaborative, global infrastructure for biodiversity assessment
Biodiversity data are rapidly becoming available over the Internet in common formats that promote sharing and exchange. Currently, these data are somewhat problematic, primarily with regard to geographic and taxonomic accuracy, for use in ecological research, natural resources management and conservation decision-making. However, web-based georeferencing tools that utilize best practices and gazetteer databases can be employed to improve geographic data. Taxonomic data quality can be improved through web-enabled valid taxon names databases and services, as well as more efficient mechanisms to return systematic research results and taxonomic misidentification rates back to the biodiversity community. Both of these are under construction. A separate but related challenge will be developing web-based visualization and analysis tools for tracking biodiversity change. Our aim was to discuss how such tools, combined with data of enhanced quality, will help transform today's portals to raw biodiversity data into nexuses of collaborative creation and sharing of biodiversity knowledge
Preferences and skills of Indian public sector teachers
With a sample of 700 future public sector primary teachers in India, a Discrete Choice Experiment is used to measure job preferences, particularly regarding location. General skills are also tested. Urban origin teachers and women are more averse to remote locations than rural origin teachers and men respectively. Women would require a 26-73 percent increase in salary for moving to a remote location. The results suggest that existing caste and gender quotas can be detrimental for hiring skilled teachers willing to work in remote locations. The most preferred location is home, which supports decentralised hiring, although this could compromise skills
The Egypt labor market panel survey: introducing the 2012 round
This paper introduces the 2012 round of the Egypt Labor Market Panel Survey (ELMPS), a publicly-available nationally representative longitudinal household survey. We describe the key characteristics of the ELMPS, including the samples and questionnaires for each round. Additionally, we examine the attrition processes observed in the panel and discuss the creation of weights to correct for attrition. We compare our data to other statistical sources for Egypt to evaluate the sample's representativeness. To demonstrate how the ELMPS allows for an improved understanding of the labor market, we compare unemployment trends using the ELMPS and other data on unemployment in Egypt
- …