13 research outputs found
In silico identification of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus
Here we report two antimicrobial peptides (AMPs), HG2 and HG4 identified from a rumen microbiome metagenomic dataset, with activity against multidrug-resistant (MDR) bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) strains, a major hospital and community-acquired pathogen. We employed the classifier model design to analyse, visualise, and interpret AMP activities. This approach allowed in silico discrimination of promising lead AMP candidates for experimental evaluation. The lead AMPs, HG2 and HG4, are fast-acting and show anti-biofilm and anti-inflammatory activities in vitro and demonstrated little toxicity to human primary cell lines. The peptides were effective in vivo within a Galleria mellonella model of MRSA USA300 infection. In terms of mechanism of action, HG2 and HG4 appear to interact with the cytoplasmic membrane of target cells and may inhibit other cellular processes, whilst preferentially binding to bacterial lipids over human cell lipids. Therefore, these AMPs may offer additional therapeutic templates for MDR bacterial infections
In silico identification of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus
Here we report two antimicrobial peptides (AMPs), HG2 and HG4 identified from a rumen microbiome metagenomic dataset, with activity against multidrug-resistant (MDR) bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) strains, a major hospital and community-acquired pathogen. We employed the classifier model design to analyse, visualise, and interpret AMP activities. This approach allowed in silico discrimination of promising lead AMP candidates for experimental evaluation. The lead AMPs, HG2 and HG4, are fast-acting and show anti-biofilm and anti-inflammatory activities in vitro and demonstrated little toxicity to human primary cell lines. The peptides were effective in vivo within a Galleria mellonella model of MRSA USA300 infection. In terms of mechanism of action, HG2 and HG4 appear to interact with the cytoplasmic membrane of target cells and may inhibit other cellular processes, whilst preferentially binding to bacterial lipids over human cell lipids. Therefore, these AMPs may offer additional therapeutic templates for MDR bacterial infections
A BOX-SCAR fragment for the identification of Actinobacillus pleuropneumoniae
Bacterial respiratory diseases are responsible for considerable mortality, morbidity and economic losses in the swine industry. Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is one of the most important disease agents, but its identification and surveillance can be impaired by the existence of many other related bacteria in normal swine microbiota. In this work, we have evaluated a BOX-A1R-based repetitive extragenic palindromic-PCR (BOX-PCR) sequence characterised amplified region (SCAR) marker for the specific identification of A. pleuropneumoniae and its use in a multiplex PCR to detect additionally Haemophilus parasuis and Pasteurella multocida, two other major respiratory pathogens of pigs that are members of the family Pasteurellaceae. PCRs based on the BOX-SCAR fragment developed were rapid, sensitive and differentiated A. pleuropneumoniae from all swine-related members of the Pasteurellaceae family tested. Single and multiplex BOX-SCAR fragment-based PCRs can be used to identify A. pleuropneumoniae from other bacterial swine pathogens and will be useful in surveillance and epidemiological studies
In vivo bioavailability of selenium in enriched Pleurotus ostreatus mushrooms
The in vivo bioavailability of Se was investigated in enriched Pleurotus ostreatus mushrooms. A bioavailability study was performed using 64 Wistar male rats separated in 8 groups and fed with different diets: without Se, with mushrooms without Se, with enriched mushrooms containing 0.15, 0.30 or 0.45 mg kg(-1) Se and a normal diet containing 0.15 mg kg(-1) of Se using sodium selenate. The experiment was performed in two periods: depletion (14 days) and repletion (21 days), according to the Association of Official Analytical Chemists. After five weeks, the rats were sacrificed under carbon dioxide, and blood was drawn by heart puncture. Blood plasma was separated by centrifugation. The total Se concentration in the plasma of rats fed with enriched mushrooms was higher than in rats fed with a normal diet containing sodium selenate. The plasma protein profiles were obtained using size exclusion chromatography (SEC) and UV detectors. Aliquots of effluents (0.5 mL per minute) were collected throughout in the end of the chomatographic column. However, Se was determined by graphite furnace atomic absorption spectrometry (GF AAS) only in the aliquots where proteins were detected by SEC-UV. The plasma protein pro. le of rats fed with different diets was similar. The highest Se concentration was observed in a peptide presenting 8 kDa. Furthermore, the higher Se concentration in this peptide was obtained for rats fed with a diet using enriched mushrooms (7 mu g L(-1) Se) compared to other diets (2-5 mu g L(-1) Se). These results showed that Se-enriched mushrooms can be considered as an alternative Se food source for humans, due to their high bioavailability
Differential expression of genes during the interaction between Colletotrichum lindemuthianum and Phaseolus vulgaris
The fungus Colletotrichum lindemuthianum is the causal agent of anthracnose, one of the most severe diseases of the common bean (Phaseolus vulgaris). The infection process begins with the adhesion of conidia to the plant’s surface. Appressoria are then formed, allowing penetration of the fungus. Next, the biotrophic phase begins, followed by the necrotrophic phase. Due to the peculiar nutrition mode of the fungus, including both of the previously mentioned stages, it is of great interest to determine which genes are involved in the transition between the two phases during the infection process. To determine this, suppression subtractive hybridization (SSH) was used in association with qRT-PCR in the present study. These methods allowed for the identification of genes that were differentially expressed at each developmental stage of the fungus in the plant. This is the first report on the use of the cited techniques to evaluate the infectious cycle of the fungus. A total of 175 sequences exhibited significant identity (e ≤ 10−5) with sequences present in the sequenced genomes of P. vulgaris and C. lindemuthianum; approximately 41 % of those were determined to belong to the fungus, and 59 % were determined to belong to the plant. Of the predicted sequences, 68 % were of unknown function or were not found in the databases. Among the analyzed expressed sequence tags (ESTs), sequences were found that encode proteins related to: primary and secondary metabolism; the transport of different compounds; the degradation/modification of proteins; cell regulation and signaling; cellular stress response; and the degradation of exogenous compounds. The obtained results allowed for the identification of sequences encoding proteins that are essential for the progression of anthracnose. Furthermore, it was possible to identify new genes, the functions of which have not yet been described, and even to identify unique genes of C. lindemuthianum that are involved in the pathogenicity and virulence of this fungus
Enrichment of Pleurotus ostreatus mushrooms with selenium in coffee husks
Pleurotus ostreatus fungus forms an edible mushroom that possesses important nutritional and medicinal properties. Selenium (Se) is essential to human diets and it is in low concentration in the soil, and consequently in food. P. ostreatus was grown in coffee husks enriched with various concentrations of sodium selenite. The biological efficiency of P. ostreatus was affected by the addition of high concentrations of Se. The highest level of Se absorption was obtained by adding 51 mg kg(1) of sodium selenite. The mushrooms from first flush contained more Se than the further flushes. These results demonstrate the great potential of coffee husks in the production of Se-enriched mushrooms and show the ability of this fungus to absorb and biomagnify Se. (C) 2011 Elsevier Ltd. All rights reserved.Brazilian Agency: CNPqBrazilian agency CAPESBrazilian agency FAPEMI
Construction of a Kluyveromyces lactis ku80 − Host strain for recombinant protein production: extracellular secretion of Pectin Lyase and a Streptavidin–Pectin Lyase Chimera
In several organisms used for recombinant protein production, integration of the expression cassette into the genome depends on site-specific recombination. In general, the yeast Kluyveromyces lactis shows low gene-targeting efficiency. In this work, two K. lactis ku80 − strains defective in the non-homologous end-joining pathway (NHEJ) were constructed using a split-marker strategy and tested as hosts for heterologous gene expression. The NHEJ pathway mediates random integration of exogenous DNA into the genome, and its function depends on the KU80 gene. KU80-defective mutants were constructed using a split-marker strategy. The vectors pKLAC1/Plg1 and pKLAC1/cStpPlg1 were used to evaluate the recovered mutants as hosts for expression of pectin lyase (PNL) and the fusion protein streptavidin–PNL, respectively. The transformation efficiency of the ku80 − mutants was higher than the respective parental strains (HP108 and JA6). In addition, PNL secretion was detected by PNL assay in both of the K. lactis ku80 − strains. In HP108ku80−/cStpPlg1 and JA6ku80−/Plg1 cultures, the PNL extracellular specific activity was 551.48 (±38.66) and 369.04 (±66.33) U/mg protein. This study shows that disruption of the KU80 gene is an effective strategy to increase the efficiency of homologous recombination with pKLAC1 vectors and the production and secretion of recombinant proteins in K. lactis transformants