21 research outputs found

    Sequencing and Analysis of Lumpy Skin Disease Virus Whole Genomes Reveals a New Viral Subgroup in West and Central Africa

    Get PDF
    Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples ("Neethling-like" clade 1.1 and "Kenya-like" subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.</p

    Studies on the control of influenza and classical swine fever

    No full text

    Establishment of a mouse- and egg-adapted strain for the evaluation of vaccine potency against H3N2 variant influenza virus in mice

    No full text
    Sporadic spreads of swine-origin influenza H3N2 variant (H3N2v) viruses were reported in humans, resulting in 437 human infections between 2011 and 2021 in the USA. Thus, an effective vaccine is needed to better control a potential pandemic for these antigenically distinct viruses from seasonal influenza. In this study, a candidate vaccine strain with efficient growth capacity in chicken embryos was established through serial blind passaging of A/Indiana/08/2011 (H3N2)v in mice and chicken embryos. Seven amino acid substitutions (M21I in PA; A138T, N165K, and V226A in HA; S312L in NP; T167I in M1; G62A in NS1 proteins) were found in the passaged viruses without a major change in the antigenicity. This mouse- and egg-adapted virus was used as a vaccine and challenge strain in mice to evaluate the efficacy of the H3N2v vaccine in different doses. Antibodies with high neutralizing titers were induced in mice immunized with 100 mu g of inactivated whole-virus particles, and those mice were significantly protected from the challenge of homologous strain. The findings indicated that the established strain in the study was useful for vaccine study in mouse models

    Detection and molecular characterization of rabies virus in Mongolia during 2008-2010

    No full text
    Aim: We aimed to investigate the prevalence and molecular characterization of rabies virus (RABV) from wild and domestic animals in Mongolia during 2008-2010. Materials and Methods: Brain tissue samples were collected from 24 rabid animals in Zavkhan, Omnogovi, Tov, Dundgovi, Govi-Altai, Selenge, Ovorkhangai, and Khentii provinces in Mongolia. Herein, samples were included from 13 domestic animals (dogs, cattle, camels, sheep, and goat) and 11 wild animals (wolves and foxes) in this study. Direct fluorescent antibody (DFA) test and reverse transcriptase polymerase chain reaction (RT-PCR) were performed for detection of RABV, and positive samples were further processed for molecular characterization of the virus using nucleoprotein gene. Subsequently, the molecular characterization was determined based on the nucleoprotein gene. Results: Out of 24 samples, 22 samples were detected positive for RABV by DFA test, and its nucleoprotein gene was amplified in all of the 24 samples by RT-PCR. These Mongolian RABVs were classified within steppe-type virus clade by phylogenetic analysis of nucleoprotein gene sequences. This steppe-type virus clade was clearly divided by two Sub-clades (A and B). The most of Mongolian RABVs belongs to the Sub-clade A in the phylogenetic tree. Conclusion: These findings have clearly confirmed RABV in domestic and wild animals of Mongolia. Further molecular characterization indicated that this Mongolian strain is steppe-type virus clade consisting of two sub-clades; the Subclade A might be prevalent in Altai, Khangai, Khentii Mountains as a major genotype, whereas the Subclade B seems to be cosmopolitan in the steppe-type virus clade, is spread in northern central Eurasia

    Efficacy of Oral Vaccine against Classical Swine Fever in Wild Boar and Estimation of the Disease Dynamics in the Quantitative Approach

    No full text
    Classical swine fever virus (CSFV) in the wild boar population has been spreading in Japan, alongside outbreaks on pigs, since classical swine fever (CSF) reemerged in September 2018. The vaccination using oral bait vaccine was initially implemented in Gifu prefecture in March 2019. In the present study, antibodies against CSFV in wild boar were assessed in 1443 captured and dead wild boars in Gifu prefecture. After the implementation of oral vaccination, the increase of the proportion of seropositive animals and their titer in wild boars were confirmed. Quantitative analysis of antigen and antibodies against CSFV in wild boar implies potential disease diversity in the wild boar population. Animals with status in high virus replication (Ct < 30) and non- or low-immune response were confirmed and were sustained at a certain level after initial oral vaccination. Through continuous vaccination periods, the increase of seroprevalence among wild boar and the decrease of CSFV-positive animals were observed. The epidemiological analysis based on the quantitative virological outcomes could provide more information on the efficacy of oral vaccination and dynamics of CSF in the wild boar population, which will help to improve the implementation of control measures for CSF in countries such as Japan and neighboring countries
    corecore