102 research outputs found

    Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies

    Get PDF
    Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes

    Clinical Role of CA125 in Worsening Heart Failure A BIOSTAT-CHF Study Subanalysis

    Get PDF
    OBJECTIVES The aim of this study was to evaluate the association between antigen carbohydrate 125 (CA125) and the risk of 1-year clinical outcomes in patients with worsening heart failure (HF).BACKGROUND CA125 is a widely available biomarker that is up-regulated in patients with acute HF and has been postulated as a useful marker of congestion and risk stratification.METHODS hi a large multicenter cohort of patients with worsening HF, either in-hospital or in the outpatient setting, the independent associations between CA125 and 1-year death and the composite of death/HF readmission (adjusted for outcome-specific prognostic risk score [BIOSTAT risk score]) were determined by using the Royston-Parmar method (N = 2356). In a sensitivity analysis, the prognostic implications of CA125 were also adjusted for a composite congestion score (CCS). Data were validated in the B1OSTAT-CHF (Biology Study to Tailored Treatment in Chronic Heart Failure validation) cohort (N = 1,630).RESULTS Surrogates of congestion, such as N-terminal pro-B-type natriuretic peptide and CCS, emerged as independent predictors of CA125. In muttivariabte survival analyses, higher CA125 was associated with an increased risk of mortality and the composite of death/HF readmission (p &lt;0.001 for both comparisons), even after adjustment for the CCS (p &lt;0.010 for both comparisons). The addition of CA125 to the B1OSTAT score led to a significant risk reclassification for both outcomes (category-free net reclassification improvement 0.137 [p &lt;0.001] and 0.104 [p 0.003] respectively). AR outcomes were confirmed in an independent validation cohort.CONCLUSIONS In patients with worsening HF, higher levels of CA125 were positively associated with parameters of congestion. Furthermore, CA125 remained independently associated with a higher risk of clinical outcomes, even beyond a predefined risk model and clinical surrogates of congestion. (C) 2020 by the American College of Cardiology Foundation.</p

    The PCSK9-LDL Receptor Axis and Outcomes in Heart Failure:BIOSTAT-CHF Subanalysis

    Get PDF
    Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds low-density lipoprotein receptor (LDLR), preventing its recycling. PCSK9 is a risk predictor and a biotarget in atherosclerosis progression. Objectives: The aim of this study was to determine whether the PCSK9-LDLR axis could predict risk in patients with heart failure (HF). Methods: The BIOSTAT-CHF (Biology Study to Tailored Treatment in Chronic Heart Failure) is a multicenter, multinational, prospective, observational study that included patients with worsening HF signs and/or symptoms. The primary endpoints were all-cause mortality and the composite of mortality or unscheduled hospitalizations for HF. We implemented Cox proportional hazard regression to determine the simultaneously adjusted effect of PCSK9 and LDLR on both outcomes when added to the previously validated BIOSTAT-CHF risk scores. Results: This study included 2,174 patients (mean age: 68 ± 12 years; 53.2% had a history of ischemic heart disease). Median (interquartile range) PCSK9 and LDLR levels were 1.81 U/ml (1.45 to 2.18) and 2.98 U/ml (2.45 to 3.53), respectively. During follow-up, 569 deaths (26.2%) and 896 (41.2%) composite endpoints were ascertained. A multivariable analysis, which included BIOSTAT-CHF risk scores, LDLR, and statin treatment as covariates, revealed a positive linear association between PCSK9 levels and the risk of mortality (hazard ratio [HR]: 1.24; 95% confidence interval [CI]: 1.04 to 1.49; p = 0.020) and the composite endpoint (HR: 1.21; 95% CI: 1.05 to 1.40; p = 0.010). A similar analysis for LDLR revealed a negative association with mortality (HR: 0.86; 95% CI: 0.76 to 0.98; p = 0.025) and the composite endpoint (HR: 0.92; 95% CI: 0.83 to 1.01; p = 0.087). Including PCSK9 and LDLR improved risk score performance. Conclusions: The PCSK9-LDLR axis was associated with outcomes in patients with HF. Future studies must assess whether PCSK9 inhibition will result in better outcomes in HF

    Revisiting the obesity paradox in heart failure:Per cent body fat as predictor of biomarkers and outcome

    Get PDF
    Aims - Obesity defined by body mass index (BMI) is characterized by better prognosis and lower plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP) in heart failure. We assessed whether another anthropometric measure, per cent body fat (PBF), reveals different associations with outcome and heart failure biomarkers (NT-proBNP, high-sensitivity troponin T (hs-TnT), soluble suppression of tumorigenesis-2 (sST2)). Methods - In an individual patient dataset, BMI was calculated as weight (kg)/height (m)2, and PBF through the Jackson–Pollock and Gallagher equations. Results - Out of 6468 patients (median 68 years, 78% men, 76% ischaemic heart failure, 90% reduced ejection fraction), 24% died over 2.2 years (1.5–2.9), 17% from cardiovascular death. Median PBF was 26.9% (22.4–33.0%) with the Jackson–Pollock equation, and 28.0% (23.8–33.5%) with the Gallagher equation, with an extremely strong correlation (r = 0.996, p 2, third PBF tertile), hs-TnT and sST2, but not NT-proBNP, independently predicted outcome. Conclusion - In parallel with increasing BMI or PBF there is an improvement in patient prognosis and a decrease in NT-proBNP, but not hs-TnT or sST2. hs-TnT or sST2 are stronger predictors of outcome than NT-proBNP among obese patients

    CA125-Guided Diuretic Treatment Versus Usual Care in Patients With Acute Heart Failure and Renal Dysfunction

    Get PDF
    Background: The optimal diuretic treatment strategy for patients with acute heart failure and renal dysfunction remains unclear. Plasma carbohydrate antigen 125 (CA125) is a surrogate of fluid overload and a potentially valuable tool for guiding decongestion therapy. The aim of this study was to determine if a CA125-guided diuretic strategy is superior to usual care in terms of short-term renal function in patients with acute heart failure and renal dysfunction at presentation. Methods: This multicenter, open-label study randomized 160 patients with acute heart failure and renal dysfunction into 2 groups (1:1). Loop diuretics doses were established according to CA125 levels in the CA125-guided group (n = 79) and in clinical evaluation in the usual-care group (n = 81). Changes in estimated glomerular filtration rate (eGFR) at 72 and 24 hours were the co-primary endpoints, respectively. Results: The mean age was 78 ± 8 years, the median amino-terminal pro-brain natriuretic peptide was 7765 pg/mL, and the mean eGFR was 33.7 ± 11.3 mL/min/1.73m2. Over 72 hours, the CA125-guided group received higher furosemide equivalent dose compared to usual care (P = 0.011), which translated into higher urine volume (P = 0.042). Moreover, patients in the active arm with CA125 >35 U/mL received the highest furosemide equivalent dose (P <0.001) and had higher diuresis (P = 0.013). At 72 hours, eGFR (mL/min/1.73m2) significantly improved in the CA125-guided group (37.5 vs 34.8, P = 0.036), with no significant changes at 24 hours (35.8 vs 39.5, P = 0.391). Conclusion: A CA125-guided diuretic strategy significantly improved eGFR and other renal function parameters at 72 hours in patients with acute heart failure and renal dysfunction

    Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations

    Get PDF
    Natriuretic peptide [NP; B‐type NP (BNP), N‐terminal proBNP (NT‐proBNP), and midregional proANP (MR‐proANP)] concentrations are quantitative plasma biomarkers for the presence and severity of haemodynamic cardiac stress and heart failure (HF). End‐diastolic wall stress, intracardiac filling pressures, and intracardiac volumes seem to be the dominant triggers. This paper details the most important indications for NPs and highlights 11 key principles underlying their clinical use shown below. NPs should always be used in conjunction with all other clinical information. NPs are reasonable surrogates for intracardiac volumes and filling pressures. NPs should be measured in all patients presenting with symptoms suggestive of HF such as dyspnoea and/or fatigue, as their use facilitates the early diagnosis and risk stratification of HF. NPs have very high diagnostic accuracy in discriminating HF from other causes of dyspnoea: the higher the NP, the higher the likelihood that dyspnoea is caused by HF. Optimal NP cut‐off concentrations for the diagnosis of acute HF (very high filling pressures) in patients presenting to the emergency department with acute dyspnoea are higher compared with those used in the diagnosis of chronic HF in patients with dyspnoea on exertion (mild increase in filling pressures at rest). Obese patients have lower NP concentrations, mandating the use of lower cut‐off concentrations (about 50% lower). In stable HF patients, but also in patients with other cardiac disorders such as myocardial infarction, valvular heart disease, atrial fibrillation or pulmonary embolism, NP concentrations have high prognostic accuracy for death and HF hospitalization. Screening with NPs for the early detection of relevant cardiac disease including left ventricular systolic dysfunction in patients with cardiovascular risk factors may help to identify patients at increased risk, therefore allowing targeted preventive measures to prevent HF. BNP, NT‐proBNP and MR‐proANP have comparable diagnostic and prognostic accuracy. In patients with shock, NPs cannot be used to identify cause (e.g. cardiogenic vs. septic shock), but remain prognostic. NPs cannot identify the underlying cause of HF and, therefore, if elevated, must always be used in conjunction with cardiac imaging

    NT-proBNP for Risk Prediction in Heart Failure:Identification of Optimal Cutoffs Across Body Mass Index Categories

    Get PDF
    OBJECTIVES The goal of this study was to assess the predictive power of N-terminal pro–B-type natriuretic peptide (NT-proBNP) and the decision cutoffs in heart failure (HF) across body mass index (BMI) categories. BACKGROUND  Concentrations of NT-proBNP predict outcome in HF. Although the influence of BMI to reduce levels of NT-proBNP is known, the impact of obesity on prognostic value remains uncertain. METHODS Individual data from the BIOS (Biomarkers In Heart Failure Outpatient Study) consortium were analyzed. Patients with stable HF were classified as underweight (BMI = 40 kg/m(2)) obese. The prognostic rote of NT-proBNP was tested for the endpoints of all-cause and cardiac death. RESULTS The study population included 12,763 patients (mean age 66 +/- 12 years; 25% women; mean left ventricular ejection fraction 33% 113%). Most patients were overweight (n = 5,176), followed by normal weight (n = 4,299), mildly obese (n = 2,157), moderately obese (n = 612), severely obese (n = 314), and underweight (n = 205). NT-proBNP inversely correlated with BMI (beta = -0.174 for 1 kg/m(2); P < 0.001). Adding NT-proBNP to clinical models improved risk prediction across BMI categories, with the exception of severely obese patients. The best cutoffs of NT-proBNP for 5-year all-cause death prediction were lower as BMI increased (3,785 ng/L, 2,193 ng/L, 1,554 ng/L, 1,045 ng/L, 755 ng/L, and 879 ng/L, for underweight, normal weight, overweight, and mildly, moderately, and severely obese patients, respectively) and were higher in women than in men. CONCLUSIONS NT-proBNP maintains its independent prognostic value up to 40 kg/m(2) BMI, and tower optimal risk-prediction cutoffs are observed in overweight and obese patients

    Genetic Variants Associated With Cancer Therapy-Induced Cardiomyopathy

    Get PDF
    BACKGROUND: Cancer therapy-induced cardiomyopathy (CCM) is associated with cumulative drug exposures and preexisting cardiovascular disorders. These parameters incompletely account for substantial interindividual susceptibility to CCM. We hypothesized that rare variants in cardiomyopathy genes contribute to CCM. METHODS: We studied 213 patients with CCM from 3 cohorts: retrospectively recruited adults with diverse cancers (n=99), prospectively phenotyped adults with breast cancer (n=73), and prospectively phenotyped children with acute myeloid leukemia (n=41). Cardiomyopathy genes, including 9 prespecified genes, were sequenced. The prevalence of rare variants was compared between CCM cohorts and The Cancer Genome Atlas participants (n=2053), healthy volunteers (n=445), and an ancestry-matched reference population. Clinical characteristics and outcomes were assessed and stratified by genotypes. A prevalent CCM genotype was modeled in anthracycline-treated mice. RESULTS: CCM was diagnosed 0.4 to 9 years after chemotherapy; 90% of these patients received anthracyclines. Adult patients with CCM had cardiovascular risk factors similar to the US population. Among 9 prioritized genes, patients with CCM had more rare protein-altering variants than comparative cohorts ( P≀1.98e-04). Titin-truncating variants (TTNtvs) predominated, occurring in 7.5% of patients with CCM versus 1.1% of The Cancer Genome Atlas participants ( P=7.36e-08), 0.7% of healthy volunteers ( P=3.42e-06), and 0.6% of the reference population ( P=5.87e-14). Adult patients who had CCM with TTNtvs experienced more heart failure and atrial fibrillation ( P=0.003) and impaired myocardial recovery ( P=0.03) than those without. Consistent with human data, anthracycline-treated TTNtv mice and isolated TTNtv cardiomyocytes showed sustained contractile dysfunction unlike wild-type ( P=0.0004 and P<0.002, respectively). CONCLUSIONS: Unrecognized rare variants in cardiomyopathy-associated genes, particularly TTNtvs, increased the risk for CCM in children and adults, and adverse cardiac events in adults. Genotype, along with cumulative chemotherapy dosage and traditional cardiovascular risk factors, improves the identification of patients who have cancer at highest risk for CCM. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov . Unique identifiers: NCT01173341; AAML1031; NCT01371981.This work was supported in part by grants from the Instituto de Salud Carlos III (ISCIII) (PI15/01551, PI17/01941 and CB16/11/00432 to P.G-P. and L.A-P.), the Spanish Ministry of Economy and Competitiveness (SAF2015-71863-REDT to P.G-P.), the John S. LaDue Memorial Fellowship at Harvard Medical School (Y.K.), Wellcome Trust (107469/Z/15/Z to J.S.W.), Medical Research Council (intramural awards to S.A.C. and J.S.W; MR/M003191/1 to U.T), National Institute for Health Research Biomedical Research Unit at the Royal Brompton and Harefield National Health Service Foundation Trust and Imperial College London (P.J.B., S.A.C., J.S.W.), National Institute for Health Research Biomedical Research Centre at Imperial College London Healthcare National Health Service Trust and Imperial College London (D.O.R., S.A.C., S.P., J.S.W.), Sir Henry Wellcome Postdoctoral Fellowship (C.N.T.), Rosetrees and Stoneygate Imperial College Research Fellowship (N.W.), Fondation Leducq (S.A.C., C.E.S., J.G.S.), Health Innovation Challenge Fund award from the Wellcome Trust and Department of Health (UK; HICF-R6-373; S.A.C., P.J.B., J.S. W.), the British Heart Foundation (NH/17/1/32725 to D.O.R.; SP/10/10/28431 to S.A.C), Alex’s Lemonade Stand Foundation (K.G.), National Institutes of Health (R.A.: U01CA097452, R01CA133881, and U01CA097452; Z.A.: R01 HL126797; B.K.: R01 HL118018 and K23-HL095661; J.G.S. and C.E.S.: 5R01HL080494, R01HL084553), and the Howard Hughes Medical Institute (C.E.S.). The Universitario Puerta de Hierro and Virgen de la Arrixaca Hospitals are members of the European Reference Network on Rare and Complex Diseases of the Heart (Guard-Heart; http://guard-heart.ern-net.eu). This publication includes independent research commissioned by the Health Innovation Challenge Fund (HICF), a parallel funding partnership between the Department of Health and Wellcome Trust. The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the Ministry of Economy, Industry and Competitiveness and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). Grants from ISCIII and the Spanish Ministry of Economy and Competitiveness are supported by the Plan Estatal de I+D+I 2013-2016 – European Regional Development Fund (FEDER) “A way of making Europe”.S

    Left ventricular function, congestion, and effect of empagliflozin on heart failure risk after myocardial infarction

    Get PDF
    Background Empagliflozin reduces the risk of heart failure (HF) hospitalizations but not all-cause mortality when started within 14 days of acute myocardial infarction (AMI). Objective To evaluate the association between left ventricular ejection fraction (LVEF), congestion, or both on outcomes and the impact of empagliflozin in reducing HF risk post-MI. Methods In the EMPACT-MI trial, patients were randomized within 14 days of an AMI complicated by either newly reduced LVEF&lt;45%, congestion, or both to empagliflozin 10 mg daily or placebo and followed for a median of 17.9 months. Results Among 6522 patients, the mean baseline LVEF was 41%+9%; 2648 patients (40.6%) presented with LVEF&lt;45% alone, 1483 (22.7%) presented with congestion alone, and 2181 (33.4%) presented with both. Among patients in the placebo arm, multivariable adjusted risk for each 10-point reduction in LVEF included all-cause death or HF hospitalization (hazard ratio [HR] 1.49; 95%CI, 1.31-1.69; P&lt;0.0001), first HF hospitalization (HR, 1.64; 95%CI, 1.37-1.96; P&lt;0.0001), and total HF hospitalizations (rate ratio [RR], 1.89; 95%CI, 1.51-2.36; P&lt;0.0001). Presence of congestion was also associated with a significantly higher risk for each of these outcomes (HR 1.52, 1.94, and RR 2.03, respectively). Empagliflozin reduced the risk for first (HR 0.77, 95%CI 0.60-0.98) and total (RR 0.67, 95%CI 0.50-0.89) HF hospitalization, irrespective of LVEF or congestion or both. The safety profile of empagliflozin was consistent across baseline LVEF and irrespective of congestion status. Conclusions In patients with AMI, severity of LV dysfunction and the presence of congestion was associated with worse outcomes. Empagliflozin reduced first and total HF hospitalizations across the range of LVEF with and without congestion
    • 

    corecore