783 research outputs found
Reconstructing the nucleon-nucleon potential by a new coupled-channel inversion method
A second-order supersymmetric transformation is presented, for the
two-channel Schr\"odinger equation with equal thresholds. It adds a
Breit-Wigner term to the mixing parameter, without modifying the eigenphase
shifts, and modifies the potential matrix analytically. The iteration of a few
such transformations allows a precise fit of realistic mixing parameters in
terms of a Pade expansion of both the scattering matrix and the effective-range
function. The method is applied to build an exactly-solvable potential for the
neutron-proton - case.Comment: 4 pages, 4 figure
Relation between widths of proton resonances and neutron asymptotic normalization coefficients in mirror states of light nuclei in a microscopic cluster model
It has been suggested recently ({\it Phys. Rev. Lett.} 91, 232501 (2003))
that the widths of narrow proton resonances are related to neutron Asymptotic
Normalization Coefficients (ANCs) of their bound mirror analogs because of
charge symmetry of nucleon-nucleon interactions.
This relation is approximated by a simple analytical formula which involves
proton resonance energies, neutron separation energies, charges of residual
nuclei and the range of their strong interaction with the last nucleon. In the
present paper, we perform microscopic-cluster model calculations for the ratio
of proton widths to neutron ANCs squared in mirror states for several light
nuclei. We compare them to predictions of the analytical formula and to
estimates made within a single-particle potential model. A knowledge of this
ratio can be used to predict unknown proton widths for very narrow low-lying
resonances in the neutron-deficient region of the - and -shells, which
is important for understanding the nucleosynthesis in the -process.Comment: 13 pages, 5 figures, submitted to PR
Crossover from one to three dimensions for a gas of hard-core bosons
We develop a variational theory of the crossover from the one-dimensional
(1D) regime to the 3D regime for ultra-cold Bose gases in thin waveguides.
Within the 1D regime we map out the parameter space for fermionization, which
may span the full 1D regime for suitable transverse confinement.Comment: 4 pages, 2 figure
Toward a Spin- and Parity-Independent Nucleon-Nucleon Potential
A supersymmetric inversion method is applied to the singlet and
neutron-proton elastic phase shifts. The resulting central potential
has a one-pion-exchange (OPE) long-range behavior and a parity-independent
short-range part; it fits inverted data well. Adding a regularized OPE tensor
term also allows the reproduction of the triplet , and
phase shifts as well as of the deuteron binding energy. The potential is thus
also spin-independent (except for the OPE part) and contains no spin-orbit
term. These important simplifications of the neutron-proton interaction are
shown to be possible only if the potential possesses Pauli forbidden bound
states, as proposed in the Moscow nucleon-nucleon model.Comment: 9 pages, RevTeX, 5 ps figure
Multichannel coupling with supersymmetric quantum mechanics and exactly-solvable model for Feshbach resonance
A new type of supersymmetric transformations of the coupled-channel radial
Schroedinger equation is introduced, which do not conserve the vanishing
behavior of solutions at the origin. Contrary to usual transformations, these
``non-conservative'' transformations allow, in the presence of thresholds, the
construction of potentials with coupled scattering matrices from uncoupled
potentials. As an example, an exactly-solvable potential matrix is obtained
which provides a very simple model of Feshbach-resonance phenomenon.Comment: 10 pages, 2 figure
Application of the generalized two-center cluster model to 10Be
A generalized two-center cluster model (GTCM), including various partitions
of the valence nucleons around two alpha-cores, is proposed for studies on the
exotic cluster structures of Be isotopes. This model is applied to the 10Be =
alpha + alpha + n + n system and the adiabatic energy surfaces for alpha-alpha
distances are calculated. It is found that this model naturally describes the
formation of the molecular orbitals as well as that of asymptotic cluster
states dependeing on their relative distance. In the negative-parity state, a
new type of the alpha + 6He cluster structure is also predicted.Comment: 5 pages, 3 figure
Coulomb corrected eikonal description of the breakup of halo nuclei
The eikonal description of breakup reactions diverges because of the Coulomb
interaction between the projectile and the target. This divergence is due to
the adiabatic, or sudden, approximation usually made, which is incompatible
with the infinite range of the Coulomb interaction. A correction for this
divergence is analysed by comparison with the Dynamical Eikonal Approximation,
which is derived without the adiabatic approximation. The correction consists
in replacing the first-order term of the eikonal Coulomb phase by the
first-order of the perturbation theory. This allows taking into account both
nuclear and Coulomb interactions on the same footing within the computationally
efficient eikonal model. Excellent results are found for the dissociation of
11Be on lead at 69 MeV/nucleon. This Coulomb Corrected Eikonal approximation
provides a competitive alternative to more elaborate reaction models for
investigating breakup of three-body projectiles at intermediate and high
energies.Comment: 19 pages, 9 figures, accepted for publication in Phys. Rev.
Supersymmetric transformations for coupled channels with threshold differences
The asymptotic behaviour of the superpotential of general SUSY
transformations for a coupled-channel Hamiltonian with different thresholds is
analyzed. It is shown that asymptotically the superpotential can tend to a
diagonal matrix with an arbitrary number of positive and negative entries
depending on the choice of the factorization solution. The transformation of
the Jost matrix is generalized to "non-conservative" SUSY transformations
introduced in Sparenberg et al (2006 J. Phys. A: Math. Gen. 39 L639). Applied
to the zero initial potential the method permits to construct superpartners
with a nontrivially coupled Jost-matrix. Illustrations are given for two- and
three-channel cases.Comment: 17 pages, 3 explicit examples and figures adde
Clarification of the relationship between bound and scattering states in quantum mechanics: Application to 12C + alpha
Using phase-equivalent supersymmetric partner potentials, a general result
from the inverse problem in quantum scattering theory is illustrated, i.e.,
that bound-state properties cannot be extracted from the phase shifts of a
single partial wave, as a matter of principle. In particular, recent R-matrix
analyses of the 12C + alpha system, extracting the asymptotic normalization
constant of the 2+ subthreshold state, C12, from the l=2 elastic-scattering
phase shifts and bound-state energy, are shown to be unreliable. In contrast,
this important constant in nuclear astrophysics can be deduced from the
simultaneous analysis of the l=0, 2, 4, 6 partial waves in a simplified
potential model. A new supersymmetric inversion potential and existing models
give C12=144500+-8500 fm-1/2.Comment: Expanded version (50% larger); three errors corrected (conversion of
published reduced widths to ANCs); nine references added, one remove
Exact Soliton-like Solutions of the Radial Gross-Pitaevskii Equation
We construct exact ring soliton-like solutions of the cylindrically symmetric
(i.e., radial) Gross- Pitaevskii equation with a potential, using the
similarity transformation method. Depending on the choice of the allowed free
functions, the solutions can take the form of stationary dark or bright rings
whose time dependence is in the phase dynamics only, or oscillating and
bouncing solutions, related to the second Painlev\'e transcendent. In each case
the potential can be chosen to be time-independent.Comment: 8 pages, 7 figures. Version 2: stability analysis of the dark
solutio
- …