172 research outputs found
Cannabinoid signalling in TNF-alpha induced IL-8 release
Original article can be found at: http://www.sciencedirect.com/science/journal/00142999 Copyright Elsevier B.V. DOI : 10.1016/j.ejphar.2006.04.015Peer reviewe
Ultrasound Guided Placement of Single-Lumen Peripheral Intravenous Catheters in the Internal Jugular Vein
Introduction: The peripheral internal jugular (IJ), also called the “easy IJ,” is an alternative to peripheral venous access reserved for patients with difficult intravenous (IV) access. The procedure involves placing a single-lumen catheter in the IJ vein under ultrasound (US) guidance. As this technique is relatively new, the details regarding the ease of the procedure, how exactly it should be performed, and the safety of the procedure are uncertain. Our primary objective was to determine the success rate for peripheral IJ placement. Secondarily, we evaluated the time needed to complete the procedure and assessed for complications. Methods: This was a prospective, single-center study of US-guided peripheral IJ placement using a 2.5-inch, 18-gauge catheter on a convenience sample of patients with at least two unsuccessful attempts at peripheral IV placement by nursing staff. Peripheral IJ lines were placed by emergency medicine (EM) attending physicians and EM residents who had completed at least five IJ central lines. All physicians who placed lines for the study watched a 15-minute lecture about peripheral IJ technique. A research assistant monitored each line to assess for complications until the patient was discharged. Results: We successfully placed a peripheral IJ in 34 of 35 enrolled patients (97.1%). The median number of attempts required for successful cannulation was one (interquartile range (IQR): 1 to 2). The median time to successful line placement was 3 minutes and 6 seconds (IQR: 59 seconds to 4 minutes and 14 seconds). Two lines failed after placement, and one of the 34 successfully placed peripheral IJ lines (2.9%) had a complication – a local hematoma. There were, however, no arterial punctures or pneumothoraces. Although only eight of 34 lines were placed using sterile attire, there were no line infections. Conclusion: Our research adds to the growing body of evidence supporting US-guided peripheral internal jugular access as a safe and convenient procedure alternative for patients who have difficult IV access
MicroRNAs in Cardiac Hypertrophy
Like other organs, the heart undergoes normal adaptive remodeling, such as cardiac hypertrophy, with age. This remodeling, however, is intensified under stress and pathological conditions. Cardiac remodeling could be beneficial for a short period of time, to maintain a normal cardiac output in times of need; however, chronic cardiac hypertrophy may lead to heart failure and death. MicroRNAs (miRNAs) are known to have a role in the regulation of cardiac hypertrophy. This paper reviews recent advances in the field of miRNAs and cardiac hypertrophy, highlighting the latest findings for targeted genes and involved signaling pathways. By targeting pro-hypertrophic genes and signaling pathways, some of these miRNAs alleviate cardiac hypertrophy, while others enhance it. Therefore, miRNAs represent very promising potential pharmacotherapeutic targets for the management and treatment of cardiac hypertrophy. - 2019 by the authors. Licensee MDPI, Basel, Switzerland
2-oxothiazolidine-4-carboxylic acid inhibits vascular calcification via induction of glutathione synthesis
© 2020 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Arterial medial calcification (AMC), the deposition of hydroxyapatite in the medial layer of the arteries, is a known risk factor for cardiovascular events. Oxidative stress is a known inducer of AMC and endogenous antioxidants, such as glutathione (GSH), may prevent calcification. GSH synthesis, however, can be limited by cysteine levels. Therefore, we assessed the effects of the cysteine prodrug 2‐oxothiazolidine‐4‐carboxylic acid (OTC), on vascular smooth muscle cell (VSMC) calcification to ascertain its therapeutic potential. Human aortic VSMCs were cultured in basal or mineralising medium (1 mM calcium chloride/sodium phosphate) and treated with OTC (1–5 mM) for 7 days. Cell‐based assays and western blot analysis were performed to assess cell differentiation and function. OTC inhibited calcification ≤90%, which was associated with increased ectonucleotide pyrophosphatase/phosphodiesterase activity, and reduced apoptosis. In calcifying cells, OTC downregulated protein expression of osteoblast markers (Runt‐related transcription factor 2 and osteopontin), while maintaining expression of VSMC markers (smooth muscle protein 22α and α‐smooth muscle actin). GSH levels were significantly reduced by 90% in VSMCs cultured in calcifying conditions, which was associated with declines in expression of gamma‐glutamylcysteine synthetase and GSH synthetase. Treatment of calcifying cells with OTC blocked the reduction in expression of both enzymes and prevented the decline in GSH. This study shows OTC to be a potent and effective inhibitor of in vitro VSMC calcification. It appears to maintain GSH synthesis which may, in turn, prevent apoptosis and VSMCs gaining osteoblast‐like characteristics. These findings may be of clinical relevance and raise the possibility that treatment with OTC could benefit patients susceptible to AMC.Peer reviewe
7-O-methylpunctatin, a novel homoisoflavonoid, inhibits phenotypic switch of human arteriolar smooth muscle cells
Remodeling of arterioles is a pivotal event in the manifestation of many inflammation-based cardio-vasculopathologies, such as hypertension. During these remodeling events, vascular smooth muscle cells (VSMCs) switch from a contractile to a synthetic phenotype. The latter is characterized by increased proliferation, migration, and invasion. Compounds with anti-inflammatory actions have been successful in attenuating this phenotypic switch. While the vast majority of studies investigating phenotypic modulation were undertaken in VSMCs isolated from large vessels, little is known about the effect of such compounds on phenotypic switch in VSMCs of microvessels (microVSMCs). We have recently characterized a novel homoisoflavonoid that we called 7-O-methylpunctatin (MP). In this study, we show that MP decreased FBS-induced cell proliferation, migration, invasion, and adhesion. MP also attenuated adhesion of THP-1 monocytes to microVSMCs, abolished FBS-induced expression of MMP-2, MMP-9, and NF-?B, as well as reduced activation of ERK1/2 and FAK. Furthermore, MP-treated VSMCs showed an increase in early (myocardin, SM-22?, SM-?) and mid-term (calponin and caldesmon) differentiation markers and a decrease in osteopontin, a protein highly expressed in synthetic VSMCs. MP also reduced transcription of cyclin D1, CDK4 but increased protein levels of p21 and p27. Taken together, these results corroborate an anti-inflammatory action of MP on human microVSMCs. Therefore, by inhibiting the synthetic phenotype of microVSMCs, MP may be a promising modulator for inflammation-induced arteriolar pathophysiology. - 2019 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This work was supported by the American University of Beirut (Grant # MPP 320133 to A.E.), University of Petra (Grant #: 5/4/2019) to A.B., E.B., and A.E., and the National Council for Scientific Research (CNRS) to M.F.Scopu
Small PARP inhibitor PJ-34 induces cell cycle arrest and apoptosis of adult T-cell leukemia cells
A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author’s publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Background
HTLV-I is associated with the development of an aggressive form of lymphocytic leukemia known as adult T-cell leukemia/lymphoma (ATLL). A major obstacle for effective treatment of ATLL resides in the genetic diversity of tumor cells and their ability to acquire resistance to chemotherapy regimens. As a result, most patients relapse and current therapeutic approaches still have limited long-term survival benefits. Hence, the development of novel approaches is greatly needed.
Methods
In this study, we found that a small molecule inhibitor of poly (ADP-ribose) polymerase (PARP), PJ-34, is very effective in activating S/G2M cell cycle checkpoints, resulting in permanent cell cycle arrest and reactivation of p53 transcription functions and caspase-3-dependent apoptosis of HTLV-I-transformed and patient-derived ATLL tumor cells. We also found that HTLV-I-transformed MT-2 cells are resistant to PJ-34 therapy associated with reduced cleaved caspase-3 activation and increased expression of RelA/p65.
Conclusion
Since PJ-34 has been tested in clinical trials for the treatment of solid tumors, our results suggest that some ATLL patients may be good candidates to benefit from PJ-34 therapy
Recommended from our members
A Novel Role for CSRP1 in a Lebanese Family with Congenital Cardiac Defects
Despite an obvious role for consanguinity in congenital heart disease (CHD), most studies fail to document a monogenic model of inheritance except for few cases. We hereby describe a first-degree cousins consanguineous Lebanese family with 7 conceived children: 2 died in utero of unknown causes, 3 have CHD, and 4 have polydactyly. The aim of the study is to unveil the genetic variant(s) causing these phenotypes using next generation sequencing (NGS) technology. Targeted exome sequencing identified a heterozygous duplication in CSRP1 which leads to a potential frameshift mutation at position 154 of the protein. This mutation is inherited from the father, and segregates only with the CHD phenotype. The in vitro characterization demonstrates that the mutation dramatically abrogates its transcriptional activity over cardiac promoters like NPPA. In addition, it differentially inhibits the physical association of CSRP1 with SRF, GATA4, and with the newly described partner herein TBX5. Whole exome sequencing failed to show any potential variant linked to polydactyly, but revealed a novel missense mutation in TRPS1. This mutation is inherited from the healthy mother, and segregating only with the cardiac phenotype. Both TRPS1 and CSRP1 physically interact, and the mutations in each abrogate their partnership. Our findings add fundamental knowledge into the molecular basis of CHD, and propose the di-genic model of inheritance as responsible for such malformations
Mechanisms of HTLV-1 persistence and transformation
Adult T-cell leukaemia (ATL) is caused by the human T-cell lymphotropic virus type 1 (HTLV-1). HTLV-1 has elaborated strategies to persist and replicate in the presence of a strong immune response. In this review, we summarise these mechanisms and their contribution to T-cell transformation and ATL development
- …