1,507 research outputs found

    Non-Gaussianity and Excursion Set Theory: Halo Bias

    Get PDF
    We study the impact of primordial non-Gaussianity generated during inflation on the bias of halos using excursion set theory. We recapture the familiar result that the bias scales as k−2k^{-2} on large scales for local type non-Gaussianity but explicitly identify the approximations that go into this conclusion and the corrections to it. We solve the more complicated problem of non-spherical halos, for which the collapse threshold is scale dependent.Comment: 13 pages, 3 figures. v2 references added. Matches published versio

    Constraining the Mass-Richness Relationship of redMaPPer Clusters with Angular Clustering

    Full text link
    The potential of using cluster clustering for calibrating the mass-observable relation of galaxy clusters has been recognized theoretically for over a decade. Here, we demonstrate the feasibility of this technique to achieve high precision mass calibration using redMaPPer clusters in the Sloan Digital Sky Survey North Galactic Cap. By including cross-correlations between several richness bins in our analysis we significantly improve the statistical precision of our mass constraints. The amplitude of the mass-richness relation is constrained to 7% statistical precision. However, the error budget is systematics dominated, reaching an 18% total error that is dominated by theoretical uncertainty in the bias-mass relation for dark matter halos. We perform a detailed treatment of the effects of assembly bias on our analysis, finding that the contribution of such effects to our parameter uncertainties is somewhat greater than that of measurement noise. We confirm the results from Miyatake et al. (2015) that the clustering amplitude of redMaPPer clusters depends on galaxy concentration, and provide additional evidence in support of this effect being due to some form of assembly bias. The results presented here demonstrate the power of cluster clustering for mass calibration and cosmology provided the current theoretical systematics can be ameliorated.Comment: 18 pages, 9 figure

    Constraining Dark Matter Microphysics with the Annihilation Signal from Subhalos

    Full text link
    In the cold dark matter scenario, galactic dark matter halos are populated with a large number of smaller subhalos. Previous work has shown that dark matter annihilations in subhalos can generate a distinctive, non-Poisson signal in the gamma-ray photon counts probability distribution function (PDF). Here we show that the gamma-ray PDF also carries information about the velocity dependence of the dark matter annihilation cross section. After calculating the PDF assuming ss-wave and Sommerfeld-enhanced annihilation, we perform a mock data analysis to illustrate how current and future observations can constrain the microphysics of the dark matter annihilation. We find that, with current Fermi data, and assuming a dark matter annihilation cross section roughly at the limit of current bounds from annihilation in dwarf spheroidal galaxies, one can potentially distinguish the non-Poissonian fluctuations expected from dark matter annihilation in subhalos from Poisson sources, as well as from dark matter models with an incorrect velocity-dependence. We explore how robust these results are to assumptions about the modeling of astrophysical backgrounds. We also point out a four-parameter degeneracy between the velocity dependence of the dark matter annihilation, the minimum subhalo mass, the power law index of the subhalo mass function, and the normalization of the dark matter signal. This degeneracy can be broken with priors from N-body simulations or from observational constraints on the subhalo mass function.Comment: 21 pages, 7 figure
    • …
    corecore