100 research outputs found

    Nutrient additions to mitigate for loss of Pacific salmon: consequences for stream biofilm and nutrient dynamics

    Get PDF
    Mitigation activities designed to supplement nutrient and organic matter inputs to streams experiencing decline or loss of Pacific salmon typically presuppose that an important pathway by which salmon nutrients are moved to fish (anadromous and/or resident) is via nutrient incorporation by biofilms and subsequent bottom-up stimulation of biofilm production, which is nutrient-limited in many ecosystems where salmon returns have declined. Our objective was to quantify the magnitude of nutrient incorporation and biofilm dynamics that underpin this indirect pathway in response to experimental additions of salmon carcasses and pelletized fish meal (a.k.a., salmon carcass analogs) to 500-m reaches of central Idaho streams over three years. Biofilm standing crops increased 2–8-fold and incorporated marine-derived nutrients (measured using 15N and 13C) in the month following treatment, but these responses did not persist year-to-year. Biofilms were nitrogen (N) limited before treatments, and remained N limited in analog, but not carcass-treated reaches. Despite these biofilm responses, in the month following treatment total N load was equal to 33–47% of the N added to the treated reaches, and N spiraling measurements suggested that as much as 20%, but more likely 2–3% of added N was taken up by microbes. Design of biologically and cost-effective strategies for nutrient addition will require understanding the rates at which stream microbes take up nutrients and the downstream distance traveled by exported nutrients

    An invasive riparian tree reduces stream ecosystem efficiency via a recalcitrant organic matter subsidy

    Get PDF
    A disturbance, such as species invasion, can alter the exchange of materials and organisms between ecosystems, with potential consequences for the function of both ecosystems. Russian olive (Elaeagnus angustifolia) is an exotic tree invading riparian corridors in the western United States, and may alter stream organic matter budgets by increasing allochthonous litter and by reducing light via shading, in turn decreasing in-stream primary production. We used a before-after invasion comparison spanning 35 years to show that Russian olive invasion increased allochthonous litter nearly 25-fold to an invaded vs. a control reach of a stream, and we found that this litter decayed more slowly than native willow. Despite a mean 50% increase in canopy cover by Russian olive and associated shading, there were no significant changes in gross primary production. Benthic organic matter storage increased fourfold after Russian olive invasion compared to pre-invasion conditions, but there were no associated changes in stream ecosystem respiration or organic matter export. Thus, estimated stream ecosystem efficiency (ratio of ecosystem respiration to organic matter input) decreased 14%. These findings show that invasions of nonnative plant species in terrestrial habitats can alter resource fluxes to streams with consequences for whole-ecosystem functions

    Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters

    Get PDF
    Although the study of resource subsidies has emerged as a key topic in both ecosystem and food web ecology, the dialogue over their role has been limited by separate approaches that emphasize either subsidy quantity or quality. Considering quantity and quality together may provide a simple, but previously unexplored, framework for identifying the mechanisms that govern the importance of subsidies for recipient food webs and ecosystems. Using a literature review of \u3e90 studies of open-water metabolism in lakes and streams, we show that high-flux, low-quality subsidies can drive freshwater ecosystem dynamics. Because most of these ecosystems are net heterotrophic, allochthonous inputs must subsidize respiration. Second, using a literature review of subsidy quality and use, we demonstrate that animals select for high-quality food resources in proportions greater than would be predicted based on food quantity, and regardless of allochthonous or autochthonous origin. This finding suggests that low-flux, high-quality subsidies may be selected for by animals, and in turn may disproportionately affect food web and ecosystem processes (e.g., animal production, trophic energy or organic matter flow, trophic cascades). We then synthesize and review approaches that evaluate the role of subsidies and explicitly merge ecosystem and food web perspectives by placing food web measurements in the context of ecosystem budgets, by comparing trophic and ecosystem production and fluxes, and by constructing flow food webs. These tools can and should be used to address future questions about subsidies, such as the relative importance of subsidies to different trophic levels and how subsidies may maintain or disrupt ecosystem stability and food web interactions

    Effects of Topology, Number and Location of Nodes, Population Density, and Stocking Duration on Hybrids’ Dispersal Across a Network

    Get PDF
    Hybridization between native cutthroat trout (Oncorhynchus clarki sp.) and introduced rainbow trout (O. mykiss) has been a topic of fisheries research for decades in the northern Rocky Mountains, USA. Several studies suggest that the likelihood of introgression at any location in a stream network is influenced by the distance between that location and the source of non-native genes, e.g., stocking locations or areas dominated by non-native or introgressed fish. The relationship between “distance to non-native source” and hybridization rates, however, is rarely quantified. Studies that attempt to quantify the relationship generally ignore the potential influence of stream network topology on gene movement. We have developed and applied an agent-based model that tracks the lineage and breeding location of individual fish over time, this simulating the movement of non-native genes among spawning locations within a stream network. The model considered both distances between spawning sites and network topology in determining non-natal spawning site selection by stocked and straying fish. Model results suggest that stream network topology has a strong influence on the relationship between “stream distance from genetic source” and “degree of hybridization” at spawning locations. However, the importance of topology varies depending on underlying model assumptions about, stocking duration, number and location of spawning grounds, population density, and spawning site fidelity, i.e., “straying rates,” within the river system

    Seasonal Variation in Terrestrial Invertebrate Subsidies to Tropical Streams and Implications for the Feeding Ecology of Hart’s Rivulus (Anablepsoides hartii)

    Get PDF
    Terrestrial invertebrates are important subsidies to fish diets, though their seasonal dynamics and importance to tropical stream consumers are particularly understudied. In this year-round study of terrestrial invertebrate input to two Trinidadian headwater streams with different forest canopy densities, we sought to (a) measure the mass and composition of terrestrial inputs with fall-in traps to evaluate the influences of seasonality, canopy cover, and rainfall intensity, and; (b) compare terrestrial and benthic prey importance to Anablepsoides hartii(Hart’s Rivulus), the dominant invertivorous fish in these streams, by concurrently measuring benthic and drifting invertebrate standing stocks and the volume and composition of invertebrates in Rivulus guts throughout the year. The biomass of terrestrial invertebrate fall-in was 53% higher in the wet versus dry season; in particular, ant input was 320% higher. Ant biomass fall-in also increased with the density of canopy cover among sampling locations within both streams. Greater precipitation correlated with increased ant inputs to the more open-canopied stream and increased inputs of winged insects in the more closed canopy stream. Concurrently, the biomass of benthic invertebrates was reduced by more than half in the wet season in both streams. We detected no differences in the total volume of terrestrial prey in Rivulus diets between seasons, though ants were a greater proportion of their diet in the wet season. In contrast, benthic prey were nearly absent from Rivulus diets in the wet season in both streams. We conclude that terrestrial invertebrates are a substantial year-round prey subsidy for invertivores in tropical stream ecosystems like those we studied, which may contrast to most temperate streams where such terrestrial inputs are significantly reduced in the cold season. Interestingly, the strongest seasonal pattern in these tropical streams was observed in benthic invertebrate biomass which was greatly reduced and almost absent from Rivulus diets during the wet season. This pattern is essentially the inverse of the pattern observed in many temperate streams and highlights the need for additional studies in tropical ecosystems to better understand how spatial and temporal variation in terrestrial subsidies and benthic prey populations combine to influence consumer diets and the structure of tropical stream food webs

    Emergence phenology of the giant salmonfly and responses by birds in Idaho river networks

    Get PDF
    Emergence of adult aquatic insects from rivers is strongly influenced by water temperature, and emergence timing helps to determine the availability of this ephemeral food resource for birds and other terrestrial insectivores. It is poorly understood how spatial heterogeneity in riverine habitat mediates the timing of emergence. Such spatiotemporal variation may have consequences for terrestrial insectivores that rely on aquatic-derived prey resources. We investigated emergence phenology of the giant salmonfly, Pteronarcys californica, at three spatial scales in two Idaho river networks. We examined the influence of tributary confluences on salmonfly emergence timing and associated insectivorous bird responses. Salmonfly emergence timing was highly variable at the basin-scale during the period we sampled (May–June). Within sub-drainage pathways not punctuated by major tributaries, emergence followed a downstream-to-upstream pattern. At the scale of reaches, abrupt changes in thermal regimes created by 10 major tributary confluences created asynchrony in emergence of 1–6  days among the 20 reaches bracketing the confluences. We observed 10 bird species capturing emerged salmonflies, including 5 species typically associated with upland habitats (e.g., American robin, red-tailed hawk, American kestrel) but that likely aggregated along rivers to take advantage of emerging salmonflies. Some birds (e.g., Lewis’s woodpecker, western tanager, American dipper) captured large numbers of salmonflies, and some of these fed salmonflies to nestlings. Emergence asynchrony created by tributaries was associated with shifts in bird abundance and richness which both nearly doubled, on average, during salmonfly emergence. Thermal heterogeneity in river networks created asynchrony in aquatic insect phenology which prolonged the availability of this pulsed prey resource for insectivorous birds during key breeding times. Such interactions between spatial and temporal heterogeneity and organism phenology may be critical to understanding the consequences of fluxes of resources that link water and land. Shifts in phenology or curtailment of life history diversity in organisms like salmonflies may have implications for these organisms, but could also contribute to mismatches or constrain availability of pulsed resources to dependent consumers. These could be unforeseen consequences, for both aquatic and terrestrial organisms, of human-driven alteration and homogenization of riverscapes

    Global Patterns and Drivers of Ecosystem Functioning in Rivers and Riparian Zones

    Get PDF
    River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature
    • …
    corecore