306 research outputs found
Two-State Migration of DNA in a structured Microchannel
DNA migration in topologically structured microchannels with periodic
cavities is investigated experimentally and with Brownian dynamics simulations
of a simple bead-spring model. The results are in very good agreement with one
another. In particular, the experimentally observed migration order of Lambda-
and T2-DNA molecules is reproduced by the simulations. The simulation data
indicate that the mobility may depend on the chain length in a nonmonotonic way
at high electric fields. This is found to be the signature of a nonequilibrium
phase transition between two different migration states, a slow one and a fast
one, which can also be observed experimentally under appropriate conditions.Comment: Revised edition corresponding to the comments by the referees,
submitted to Physical Review
Phase Transitions of Single Semi-stiff Polymer Chains
We study numerically a lattice model of semiflexible homopolymers with
nearest neighbor attraction and energetic preference for straight joints
between bonded monomers. For this we use a new algorithm, the "Pruned-Enriched
Rosenbluth Method" (PERM). It is very efficient both for relatively open
configurations at high temperatures and for compact and frozen-in low-T states.
This allows us to study in detail the phase diagram as a function of
nn-attraction epsilon and stiffness x. It shows a theta-collapse line with a
transition from open coils to molten compact globules (large epsilon) and a
freezing transition toward a state with orientational global order (large
stiffness x). Qualitatively this is similar to a recently studied mean field
theory (Doniach et al. (1996), J. Chem. Phys. 105, 1601), but there are
important differences. In contrast to the mean field theory, the
theta-temperature increases with stiffness x. The freezing temperature
increases even faster, and reaches the theta-line at a finite value of x. For
even stiffer chains, the freezing transition takes place directly without the
formation of an intermediate globule state. Although being in contrast with
mean filed theory, the latter has been conjectured already by Doniach et al. on
the basis of low statistics Monte Carlo simulations. Finally, we discuss the
relevance of the present model as a very crude model for protein folding.Comment: 11 pages, Latex, 8 figure
P-Band Induced Self-Organization and Dynamics with Repulsively Driven Ultracold Atoms in an Optical Cavity.
We investigate a Bose-Einstein condensate strongly coupled to an optical cavity via a repulsive optical lattice. We detect a stable self-ordered phase in this regime, and show that the atoms order through an antisymmetric coupling to the P band of the lattice, limiting the extent of the phase and changing the geometry of the emergent density modulation. Furthermore, we find a nonequilibrium phase with repeated intense bursts of the intracavity photon number, indicating nontrivial driven-dissipative dynamics
Short Time Behavior in De Gennes' Reptation Model
To establish a standard for the distinction of reptation from other modes of
polymer diffusion, we analytically and numerically study the displacement of
the central bead of a chain diffusing through an ordered obstacle array for
times . Our theory and simulations agree quantitatively and show
that the second moment approaches the often viewed as signature of
reptation only after a very long transient and only for long chains (N > 100).
Our analytically solvable model furthermore predicts a very short transient for
the fourth moment. This is verified by computer experiment.Comment: 4 pages, revtex, 4 ps file
On the Flavor Structure of the Constituent Quark
We discuss the dressing of constituent quarks with a pseudoscalar meson cloud
within the effective chiral quark model. SU(3) flavor symmetry breaking effects
are included explicitly. Our results are compared with those of the traditional
meson cloud approach in which pions are coupled to the nucleon. The pionic
dressing of the constituent quarks explains the experimentally observed
violation of the Gottfried Sum Rule and leads to an enhanced nonperturbative
sea of quark-antiquark pairs in the constituent quark and consequently in the
nucleon. We find 2.5 times more pions and 10-15 times more kaons in the nucleon
than in the traditional picture.Comment: 7 pages, LaTeX, 4 Postscript figures, to appear in J. Phys.
Structure Function of Polymer Nematic Liquid Crystals: A Monte Carlo Simulation
We present a Monte Carlo simulation of a polymer nematic for varying volume
fractions, concentrating on the structure function of the sample. We achieve
nematic ordering with stiff polymers made of spherical monomers that would
otherwise not form a nematic state. Our results are in good qualitative
agreement with theoretical and experimental predictions, most notably the
bowtie pattern in the static structure function.Comment: 10 pages, plain TeX, macros included, 3 figures available from
archive. Published versio
- …