37 research outputs found

    The value of arthroscopy in the treatment of complex ankle fractures - a protocol of a randomised controlled trial

    Get PDF
    Background: An anatomical reconstruction of the ankle congruity is the important prerequisite in the operative treatment of acute ankle fractures. Despite anatomic restoration patients regularly suffer from residual symptoms after these fractures. There is growing evidence, that a poor outcome is related to the concomitant traumatic intra-articular pathology. By supplementary ankle arthroscopy anatomic reduction can be confirmed and associated intra-articular injuries can be treated. Nevertheless, the vast majority of complex ankle fractures are managed by open reduction and internal fixation (ORIF) only. Up to now, the effectiveness of arthroscopically assisted fracture treatment (AORIF) has not been conclusively determined. Therefore, a prospective randomised study is needed to sufficiently evaluate the effect of AORIF compared to ORIF in complex ankle fractures. Methods/design: We perform a randomised controlled trial at Munich University Clinic enrolling patients (18-65 years) with an acute ankle fracture (AO 44 A2, A3, B2, B3, C1 - C3 according to AO classification system). Patients meeting the inclusion criteria are randomised to either intervention group (AORIF, n = 37) or comparison group (ORIF, n = 37). Exclusion criteria are fractures classified as AO type 44 A1 or B1, pilon or plafond-variant injury or open fractures. Primary outcome is the AOFAS Score (American Orthopaedic Foot and Ankle Society). Secondary outcome parameter are JSSF Score (Japanese Society of Surgery of the Foot), Olerud and Molander Score, Karlsson Score, Tegner Activity Scale, SF-12, radiographic analysis, arthroscopic findings of intra-articular lesions, functional assessments, time to return to work/sports and complications. This study protocol is accordant to the SPIRIT 2013 recommendation. Statistical analysis will be performed using SPSS 22.0 (IBM). Discussion: The subjective and functional outcome of complex ankle fractures is regularly unsatisfying. As these injuries are very common it is essential to improve the postoperative results. Potentially, arthroscopically assisted fracture treatment can significantly improve the outcome by addressing the intra-articular pathologies. Given the absolute lack of studies comparing AORIF to ORIF in complex ankle fractures, this randomised controlled trail is urgently needed to evaluate the effectiveness of additional arthroscopy

    The influence of distal screw length on the primary stability of volar plate osteosynthesis-a biomechanical study

    Get PDF
    Background: Extensor tendon irritation is one of the most common complications following volar locking plate osteosynthesis (VLPO) for distal radius fractures. It is most likely caused by distal screws protruding the dorsal cortex. Shorter distal screws could avoid this, yet the influence of distal screw length on the primary stability in VLPO is unknown. The aim of this study was to compare 75 to 100 % distal screw lengths in VLPO. Methods: A biomechanical study was conducted on 11 paired fresh-frozen radii. HRpQCT scans were performed to assess bone mineral density (BMD) and bone mineral content (BMC). The specimens were randomized pair-wise into two groups: 100 % (group A) and 75 % (group B) unicortical distal screw lengths. A validated fracture model for extra-articular distal radius fractures (AO-23 A3) was used. Polyaxial volar locking plates were mounted, and distal screws was inserted using a drill guide block. For group A, the distal screw tips were intended to be flush or just short of the dorsal cortex. In group B, a target screw length of 75 % was calculated. The specimens were tested to failure using a displacement-controlled axial compression test. Primary biomechanical stability was assessed by stiffness, elastic limit, and maximum force as well as with residual tilt, which quantified plastic deformation. Results: Nine specimens were tested successfully. BMD and BMC did not differ between the two groups. The mean distal screw length of group A was 21.7 +/- 2.6 mm (range: 16 to 26 mm),for group B 16.9 +/- 1.9 mm (range: 12 to 20 mm). Distal screws in group B were on average 5.6 +/- 0.9 mm (range: 3 to 7 mm) shorter than measured. No significant differences were found for stiffness (706 +/- 103 N/mm vs. 660 +/- 124 N/mm),elastic limit (177 +/- 25 N vs. 167 +/- 36 N),maximum force (493 +/- 139 N vs. 471 +/- 149 N),or residual tilt (7.3 degrees +/- 0.7 degrees vs. 7.1 degrees +/- 1.3 degrees). Conclusion: The 75 % distal screw length in VLPO provides similar primary stability to 100 % unicortical screw length. This study, for the first time, provides the biomechanical basis to choose distal screws significantly shorter then measured

    The influence of knee position on ankle dorsiflexion - a biometric study

    Get PDF
    Background: Musculus gastrocnemius tightness (MGT) can be diagnosed by comparing ankle dorsiflexion (ADF) with the knee extended and flexed. Although various measurement techniques exist, the degree of knee flexion needed to eliminate the effect of the gastrocnemius on ADF is still unknown. The aim of this study was to identify the minimal degree of knee flexion required to eliminate the restricting effect of the musculus gastrocnemius on ADF. Methods: Bilateral ADF of 20 asymptomatic volunteers aged 18-40 years (50% female) was assessed prospectively at six different degrees of knee flexion (0 degrees, 20 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, Lunge). Tests were performed following a standardized protocol, non weightbearing and weightbearing, by two observers. Statistics comprised of descriptive statistics, t-tests, repeated measurement ANOVA and ICC. Results: 20 individuals with a mean age of 27 +/- 4 years were tested. No significant side to side differences were observed. The average ADF [95% confidence interval] for non weightbearing was 4 degrees{[}1 degrees-8 degrees] with the knee extended and 20 degrees [16 degrees-24 degrees] for the knee 75 flexed. Mean weightbearing ADF was 25 degrees[22 degrees-28 degrees] for the knee extended and 39 degrees[36 degrees-42 degrees] for the knee 75 degrees flexed. The mean differences between 20 degrees knee flexion and full extension were 15 degrees[12 degrees-18 degrees] non weightbearing and 13 degrees[11 degrees-16 degrees] weightbearing. Significant differences of ADF were only found between full extension and 20 degrees of knee flexion. Further knee flexion did not increase ADF. Conclusion: Knee flexion of 20 degrees fully eliminates the ADF restraining effect of the gastrocnemius. This knowledge is essential to design a standardized clinical examination assessing MGT

    The influence of distal screw length on the primary stability of volar plate osteosynthesis-a biomechanical study

    Get PDF
    Background: Extensor tendon irritation is one of the most common complications following volar locking plate osteosynthesis (VLPO) for distal radius fractures. It is most likely caused by distal screws protruding the dorsal cortex. Shorter distal screws could avoid this, yet the influence of distal screw length on the primary stability in VLPO is unknown. The aim of this study was to compare 75 to 100 % distal screw lengths in VLPO. Methods: A biomechanical study was conducted on 11 paired fresh-frozen radii. HRpQCT scans were performed to assess bone mineral density (BMD) and bone mineral content (BMC). The specimens were randomized pair-wise into two groups: 100 % (group A) and 75 % (group B) unicortical distal screw lengths. A validated fracture model for extra-articular distal radius fractures (AO-23 A3) was used. Polyaxial volar locking plates were mounted, and distal screws was inserted using a drill guide block. For group A, the distal screw tips were intended to be flush or just short of the dorsal cortex. In group B, a target screw length of 75 % was calculated. The specimens were tested to failure using a displacement-controlled axial compression test. Primary biomechanical stability was assessed by stiffness, elastic limit, and maximum force as well as with residual tilt, which quantified plastic deformation. Results: Nine specimens were tested successfully. BMD and BMC did not differ between the two groups. The mean distal screw length of group A was 21.7 +/- 2.6 mm (range: 16 to 26 mm),for group B 16.9 +/- 1.9 mm (range: 12 to 20 mm). Distal screws in group B were on average 5.6 +/- 0.9 mm (range: 3 to 7 mm) shorter than measured. No significant differences were found for stiffness (706 +/- 103 N/mm vs. 660 +/- 124 N/mm),elastic limit (177 +/- 25 N vs. 167 +/- 36 N),maximum force (493 +/- 139 N vs. 471 +/- 149 N),or residual tilt (7.3 degrees +/- 0.7 degrees vs. 7.1 degrees +/- 1.3 degrees). Conclusion: The 75 % distal screw length in VLPO provides similar primary stability to 100 % unicortical screw length. This study, for the first time, provides the biomechanical basis to choose distal screws significantly shorter then measured

    Intraoperative dynamics of workflow disruptions and surgeons' technical performance failures: insights from a simulated operating room

    Get PDF
    INTRODUCTION Flow disruptions (FD) in the operating room (OR) have been found to adversely affect the levels of stress and cognitive workload of the surgical team. It has been concluded that frequent disruptions also lead to impaired technical performance and subsequently pose a risk to patient safety. However, respective studies are scarce. We therefore aimed to determine if surgical performance failures increase after disruptive events during a complete surgical intervention. METHODS We set up a mixed-reality-based OR simulation study within a full-team scenario. Eleven orthopaedic surgeons performed a vertebroplasty procedure from incision to closure. Simulations were audio- and videotaped and key surgical instrument movements were automatically tracked to determine performance failures, i.e. injury of critical tissue. Flow disruptions were identified through retrospective video observation and evaluated according to duration, severity, source, and initiation. We applied a multilevel binary logistic regression model to determine the relationship between FDs and technical performance failures. For this purpose, we compared FDs in one-minute intervals before performance failures with intervals without subsequent performance failures. RESULTS Average simulation duration was 30:02~min (SD = 10:48~min). In 11 simulated cases, 114 flow disruption events were observed with a mean hourly rate of 20.4 (SD = 5.6) and substantial variation across FD sources. Overall, 53 performance failures were recorded. We observed no relationship between FDs and likelihood of immediate performance failures: Adjusted odds ratio = 1.03 (95% CI 0.46-2.30). Likewise, no evidence could be found for different source types of FDs. CONCLUSION Our study advances previous methodological approaches through the utilisation of a mixed-reality simulation environment, automated surgical performance assessments, and expert-rated observations of FD events. Our data do not support the common assumption that FDs adversely affect technical performance. Yet, future studies should focus on the determining factors, mechanisms, and dynamics underlying our findings

    Using self-drilling screws in volar plate osteosynthesis for distal radius fractures: a feasibility study

    Get PDF
    Background: Symptomatic extensor tendon irritation is a frequent complication in volar plate osteosynthesis of distal radius fractures. It is typically caused by dorsal screw protrusion and overdrilling of the dorsal cortex. The use of self-drilling locking screws (SDLS) could overcome both causes. The practical applicability of SDLS depends on two prerequisites: (1) the feasibility of preoperative distal screw length determination, and (2) sufficient primary biomechanical stability of SDLS compared to standard locking screws (SLS). Methods: We first assessed the feasibility of preoperative screw length determination (1): Distal radius width, depth and distal screw lengths were measured in 38 human radii. Correlations between distal radius width and depth were assessed, a cluster analysis (Ward's method and squared Euclidean distance) for distal radius width conducted, and intra-cluster screw lengths analyzed (ANOVA). The biomechanical performance of SDLS (2) was assessed by comparison to SLS in a distal radius fracture model (AO-23 A3). 75 % distal screw length was chosen for both groups to simulate a worst-case scenario. Uniaxial compression tests were conducted to measure stiffness, elastic limit, maximum force and residual tilt. Statistics comprised of independent sample t-tests and a Bonferroni correction (p 36.9 mm. ANOVA and Tukey post-hoc analysis revealed significantly different volar-dorsal depths (p < 0.05) for nearly all screws. (2) To assess biomechanical stability nine specimens were tested each;no significant differences were found between the SDLS and SLS groups. Conclusions: This feasibility study demonstrates that (1) distal radius width can be used as a predictor for distal screw length and (2) that SDLS provides mechanical stability equivalent to SLS. These results highlight the feasibility of applying SDLS screws in volar plate osteosynthesis at least in extraarticular fractures

    Analysis of the three-dimensional anatomical variance of the distal radius using 3D shape models

    Get PDF
    BACKGROUND: Various medical fields rely on detailed anatomical knowledge of the distal radius. Current studies are limited to two-dimensional analysis and biased by varying measurement locations. The aims were to 1) generate 3D shape models of the distal radius and investigate variations in the 3D shape, 2) generate and assess morphometrics in standardized cut planes, and 3) test the model's classification accuracy. METHODS: The local radiographic database was screened for CT-scans of intact radii. 1) The data sets were segmented and 3D surface models generated. Statistical 3D shape models were computed (overall, gender and side separate) and the 3D shape variation assessed by evaluating the number of modes. 2) Anatomical landmarks were assigned and used to define three standardized cross-sectional cut planes perpendicular to the main axis. Cut planes were generated for the mean shape models and each individual radius. For each cut plane, the following morphometric parameters were calculated and compared: maximum width and depth, perimeter and area. 3) The overall shape model was utilized to evaluate the predictive value (leave one out cross validation) for gender and side identification within the study population. RESULTS: Eighty-six radii (45 left, 44% female, 40 +/- 18 years) were included. 1) Overall, side and gender specific statistical 3D models were successfully generated. The first mode explained 37% of the overall variance. Left radii had a higher shape variance (number of modes: 20 female / 23 male) compared to right radii (number of modes: 6 female / 6 male). 2) Standardized cut planes could be defined using anatomical landmarks. All morphometric parameters decreased from distal to proximal. Male radii were larger than female radii with no significant side difference. 3) The overall shape model had a combined median classification probability for side and gender of 80%. CONCLUSIONS: Statistical 3D shape models of the distal radius can be generated using clinical CT-data sets. These models can be used to assess overall bone variance, define and analyze standardized cut-planes, and identify the gender of an unknown sample. These data highlight the potential of shape models to assess the 3D anatomy and anatomical variance of human bones

    Accelerated physical emulation of Bayesian inference in spiking neural networks

    Get PDF
    The massively parallel nature of biological information processing plays an important role for its superiority to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications.Comment: This preprint has been published 2019 November 14. Please cite as: Kungl A. F. et al. (2019) Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks. Front. Neurosci. 13:1201. doi: 10.3389/fnins.2019.0120

    Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate

    Full text link
    We present first experimental results on the novel BrainScaleS-2 neuromorphic architecture based on an analog neuro-synaptic core and augmented by embedded microprocessors for complex plasticity and experiment control. The high acceleration factor of 1000 compared to biological dynamics enables the execution of computationally expensive tasks, by allowing the fast emulation of long-duration experiments or rapid iteration over many consecutive trials. The flexibility of our architecture is demonstrated in a suite of five distinct experiments, which emphasize different aspects of the BrainScaleS-2 system
    corecore