8,839 research outputs found

    Changes in calcification of coccoliths under stable atmospheric CO2

    Get PDF
    The response of coccolithophore calcification to ocean acidification has been studied in culture experiments as well as in present and past oceans. The response, however, is different between species and strains, and for the relatively small carbonate chemistry changes observed in natural environments, a uniform response of the entire coccolithophore community has not been documented so far. Moreover, previous palaeo-studies basically focus on changes in coccolith weight due to increasing CO2 and the resulting changes in the carbonate system, and only few studies focus on the influence of other environmental factors. In order to untangle changes in coccolithophore calcification due to environmental factors such as temperature and/or productivity from changes caused by increasing pCO2 and decreasing carbonate ion concentration, we here present a study on coccolith calcification from the Holocene North Atlantic Ocean. The pre-industrial Holocene, with its predominantly stable atmospheric CO2, provides the conditions for such a comprehensive analysis. For an analysis on changes in major components of Holocene coccolithophores under natural conditions, the family Noelaerhabdaceae was selected, which constitutes the main part of the assemblage in the North Atlantic. Records of average coccolith weights from three Holocene sediment cores along a north–south transect in the North Atlantic were analysed. During the Holocene, mean weight (and therefore calcification) of Noelaerhabdaceae (Emiliania huxleyi and Gephyrocapsa) coccoliths decreased at the Azores (Geofar KF 16) from around 7 to 6 pg, but increased at the Rockall Plateau (ODP site 980) from around 6 to 8 pg, and at the Vøring Plateau (MD08-3192) from 7 to 10 pg. The amplitude of average weight variability is within the range of glacial–interglacial changes that were interpreted to be an effect of decreasing carbonate ion concentration. By comparison with SEM assemblage counts, we show that weight changes are not only partly due to variations in the coccolithophore assemblage but also an effect of a change in calcification and/or morphotype variability within single species. Our results indicate that there is no single key factor responsible for the observed changes in coccolith weight. A major increase in coccolith weight occurs during a slight decrease in carbonate ion concentration in the late Holocene at the Rockall Plateau and Vøring Plateau. Here, more favourable productivity conditions apparently lead to an increase in coccolith weight, either due to the capability of coccolithophore species, especially E. huxleyi, to adapt to decreasing carbonate ion concentration or due to a shift towards heavier calcifying morphotypes

    Persistent photovoltage in methylammonium lead iodide perovskite solar cells

    Get PDF
    Open circuit voltage decay measurements are performed on methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells to investigate the charge carrier recombination dynamics. The measurements are compared to the two reference polymer-fullerene bulk heterojunction solar cells based on P3HT:PC60BM and PTB7:PC70BM blends. In the perovskite devices, two very different time domains of the voltage decay are found, with a first drop on a short time scale that is similar to the organic solar cells. However, two major differences are also observed. 65-70% of the maximum photovoltage persists on much longer timescales, and the recombination dynamics are dependent on the illumination intensity.Comment: 5 pages, 3 figure

    Лазерное инициирование порошков тэна в условиях объемного сжатия

    Get PDF
    Определены энергетические пороги инициирования и исследована кинетика процесса взрывного разложения порошков тетранитрата пентаэритрита, объемносжатых до давления 5·108Н/м2, при воздействии импульсом лазерного излучения на длинах волн 1064 нм (область прозрачности) и 266 нм (область собственного поглощения). Реализованы условия низкопорогового инициирования для порошков чистого тэна первой, второй и четвертой гармониках излучения неодимового лазера

    DNA Spools under Tension

    Full text link
    DNA-spools, structures in which DNA is wrapped and helically coiled onto itself or onto a protein core are ubiquitous in nature. We develop a general theory describing the non-equilibrium behavior of DNA-spools under linear tension. Two puzzling and seemingly unrelated recent experimental findings, the sudden quantized unwrapping of nucleosomes and that of DNA toroidal condensates under tension are theoretically explained and shown to be of the same origin. The study provides new insights into nucleosome and chromatin fiber stability and dynamics

    Coccolithophore fluxes in the open tropical North Atlantic: influence of thermocline depth, Amazon water, and Saharan dust

    Get PDF
    Coccolithophores are calcifying phytoplankton and major contributors to both the organic and inorganic oceanic carbon pumps. Their export fluxes, species composition, and seasonal patterns were determined in two sediment trap moorings (M4 at 12 degrees N, 49 degrees W and M2 at 14 degrees N, 37 degrees W) collecting settling particles synchronously from October 2012 to November 2013 at 1200 m of water depth in the open equatorial North Atlantic. The two trap locations showed a similar seasonal pattern in total coccolith export fluxes and a predominantly tropical coccolithophore settling assemblage. Species fluxes were dominated throughout the year by lower photic zone (LPZ) taxa (Florisphaera profunda, Gladiolithus flabellatus) but also included upper photic zone (UPZ) taxa (Umbellosphaera spp., Rhabdosphaera spp., Umbilicosphaera spp., Helicosphaera spp.). The LPZ flora was most abundant during fall 2012, whereas the UPZ flora was more important during summer. In spite of these similarities, the western part of the study area produced persistently higher fluxes, averaging 241 x 10(7) +/- 76 x 10(7) coccoliths m(-2) d(-1) at station M4 compared to only 66 x 10(7) +/- 31 x 10(7) coccoliths m(-2) d(-1) at station M2. Higher fluxes at M4 were mainly produced by the LPZ species, favoured by the westward deepening of the thermocline and nutricline. Still, most UPZ species also contributed to higher fluxes, reflecting enhanced productivity in the western equatorial North Atlantic. Such was the case of two marked flux peaks of the more opportunistic species Gephyrocapsa muellerae and Emiliania huxleyi in January and April 2013 at M4, indicating a fast response to the nutrient enrichment of the UPZ, probably by wind-forced mixing. Later, increased fluxes of G. oceanica and E. huxleyi in October-November 2013 coincided with the occurrence of Amazon-River-affected surface waters. Since the spring and fall events of 2013 were also accompanied by two dust flux peaks, we propose a scenario in which atmospheric dust also provided fertilizing nutrients to this area. Enhanced surface buoyancy associated with the river plume indicates that the Amazon acted not only as a nutrient source, but also as a surface density retainer for nutrients supplied from the atmosphere. Nevertheless, lower total coccolith fluxes during these events compared to the maxima recorded in November 2012 and July 2013 indicate that transient productivity by opportunistic species was less important than "background" tropical productivity in the equatorial North Atlantic. This study illustrates how two apparently similar sites in the tropical open ocean actually differ greatly in ecological and oceanographic terms. The results presented here provide valuable insights into the processes governing the ecological dynamics and the downward export of coccolithophores in the tropical North Atlantic.Netherlands Organization for Scientific Research (NWO) [822.01.008]; European Research Council (ERC) [311152]; University of Bremen; European Union [600411]info:eu-repo/semantics/publishedVersio

    A time lens for high resolution neutron time of flight spectrometers

    Full text link
    We examine in analytic and numeric ways the imaging effects of temporal neutron lenses created by traveling magnetic fields. For fields of parabolic shape we derive the imaging equations, investigate the time-magnification, the evolution of the phase space element, the gain factor and the effect of finite beam size. The main aberration effects are calculated numerically. The system is technologically feasible and should convert neutron time of flight instruments from pinhole- to imaging configuration in time, thus enhancing intensity and/or time resolution. New fields of application for high resolution spectrometry may be opened.Comment: 8 pages, 11 figure

    Distributed Community Detection in Dynamic Graphs

    Full text link
    Inspired by the increasing interest in self-organizing social opportunistic networks, we investigate the problem of distributed detection of unknown communities in dynamic random graphs. As a formal framework, we consider the dynamic version of the well-studied \emph{Planted Bisection Model} \sdG(n,p,q) where the node set [n][n] of the network is partitioned into two unknown communities and, at every time step, each possible edge (u,v)(u,v) is active with probability pp if both nodes belong to the same community, while it is active with probability qq (with q<<pq<<p) otherwise. We also consider a time-Markovian generalization of this model. We propose a distributed protocol based on the popular \emph{Label Propagation Algorithm} and prove that, when the ratio p/qp/q is larger than nbn^{b} (for an arbitrarily small constant b>0b>0), the protocol finds the right "planted" partition in O(logn)O(\log n) time even when the snapshots of the dynamic graph are sparse and disconnected (i.e. in the case p=Θ(1/n)p=\Theta(1/n)).Comment: Version I
    corecore