2,513 research outputs found
Aristelliger praesignis (Jamaican Croaking Lizard). Maximum Size.
This article is available as on open access publication downloadable from the Society for the Study of Amphibians and Reptiles website https://ssarherps.org/herpetological-review-pdfs/. The attached file is the published pdf
One-Component Order Parameter in URuSi Uncovered by Resonant Ultrasound Spectroscopy and Machine Learning
The unusual correlated state that emerges in URuSi below T =
17.5 K is known as "hidden order" because even basic characteristics of the
order parameter, such as its dimensionality (whether it has one component or
two), are "hidden". We use resonant ultrasound spectroscopy to measure the
symmetry-resolved elastic anomalies across T. We observe no anomalies in
the shear elastic moduli, providing strong thermodynamic evidence for a
one-component order parameter. We develop a machine learning framework that
reaches this conclusion directly from the raw data, even in a crystal that is
too small for traditional resonant ultrasound. Our result rules out a broad
class of theories of hidden order based on two-component order parameters, and
constrains the nature of the fluctuations from which unconventional
superconductivity emerges at lower temperature. Our machine learning framework
is a powerful new tool for classifying the ubiquitous competing orders in
correlated electron systems
Probing transport in quantum many-fermion simulations via quantum loop topography
Quantum many-fermion systems give rise to diverse states of matter that often
reveal themselves in distinctive transport properties. While some of these
states can be captured by microscopic models accessible to numerical exact
quantum Monte Carlo simulations, it nevertheless remains challenging to
numerically access their transport properties. Here we demonstrate that quantum
loop topography (QLT) can be used to directly probe transport by machine
learning current-current correlations in imaginary time. We showcase this
approach by studying the emergence of superconducting fluctuations in the
negative-U Hubbard model and a spin-fermion model for a metallic quantum
critical point. For both sign-free models, we find that the QLT approach
detects a change in transport in very good agreement with their established
phase diagrams. These proof-of-principle calculations combined with the
numerical efficiency of the QLT approach point a way to identify hitherto
elusive transport phenomena such as non-Fermi liquids using machine learning
algorithms.Comment: 7 pages, 5 figure
On Glauber modes in Soft-Collinear Effective Theory
Gluon interactions involving spectator partons in collisions at hadronic
machines are investigated. We find a class of examples in which a mode, called
Glauber gluons, must be introduced to the effective theory for consistency.Comment: 19 pages, three figures. Uses JHEP3.cl
Differential modulation of visual responses by distractor or target expectations
Discriminating relevant from irrelevant information in a busy visual scene is supported by statistical regularities in the environment. However, it is unclear to what extent immediate stimulus repetitions and higher order expectations (whether a repetition is statistically probable or not) are supported by the same neural mechanisms. Moreover, it is also unclear whether target and distractor-related processing are mediated by the same or different underlying neural mechanisms. Using a speeded target discrimination task, the present study implicitly cued subjects to the location of the target or the distractor via manipulations in the underlying stimulus predictability. In separate studies, we collected EEG and MEG alongside behavioural data. Results showed that reaction times were reduced with increased expectations for both types of stimuli and that these effects were driven by expected repetitions in both cases. Despite the similar behavioural pattern across target and distractors, neurophysiological measures distinguished the two stimuli. Specifically, the amplitude of the P1 was modulated by stimulus relevance, being reduced for repeated distractors and increased for repeated targets. The P1 was not, however, modulated by higher order stimulus expectations. These expectations were instead reflected in modulations in ERP amplitude and theta power in frontocentral electrodes. Finally, we observed that a single repetition of a distractor was sufficient to reduce decodability of stimulus spatial location and was also accompanied by diminished representation of stimulus features. Our results highlight the unique mechanisms involved in distractor expectation and suppression and underline the importance of studying these processes distinctly from target-related attentional control
Parton Fragmentation within an Identified Jet at NNLL
The fragmentation of a light parton i to a jet containing a light energetic
hadron h, where the momentum fraction of this hadron as well as the invariant
mass of the jet is measured, is described by "fragmenting jet functions". We
calculate the one-loop matching coefficients J_{ij} that relate the fragmenting
jet functions G_i^h to the standard, unpolarized fragmentation functions D_j^h
for quark and gluon jets. We perform this calculation using various IR
regulators and show explicitly how the IR divergences cancel in the matching.
We derive the relationship between the coefficients J_{ij} and the quark and
gluon jet functions. This provides a cross-check of our results. As an
application we study the process e+ e- to X pi+ on the Upsilon(4S) resonance
where we measure the momentum fraction of the pi+ and restrict to the dijet
limit by imposing a cut on thrust T. In our analysis we sum the logarithms of
tau=1-T in the cross section to next-to-next-to-leading-logarithmic accuracy
(NNLL). We find that including contributions up to NNLL (or NLO) can have a
large impact on extracting fragmentation functions from e+ e- to dijet + h.Comment: expanded introduction, typos fixed, journal versio
Non-global Structure of the O({\alpha}_s^2) Dijet Soft Function
High energy scattering processes involving jets generically involve matrix
elements of light- like Wilson lines, known as soft functions. These describe
the structure of soft contributions to observables and encode color and
kinematic correlations between jets. We compute the dijet soft function to
O({\alpha}_s^2) as a function of the two jet invariant masses, focusing on
terms not determined by its renormalization group evolution that have a
non-separable dependence on these masses. Our results include non-global single
and double logarithms, and analytic results for the full set of non-logarithmic
contributions as well. Using a recent result for the thrust constant, we
present the complete O({\alpha}_s^2) soft function for dijet production in both
position and momentum space.Comment: 55 pages, 8 figures. v2: extended discussion of double logs in the
hard regime. v3: minor typos corrected, version published in JHEP. v4: typos
in Eq. (3.33), (3.39), (3.43) corrected; this does not affect the main
result, numerical results, or conclusion
Resummation of heavy jet mass and comparison to LEP data
The heavy jet mass distribution in e+e- collisions is computed to
next-to-next-to-next-to leading logarithmic (NNNLL) and next-to-next-to leading
fixed order accuracy (NNLO). The singular terms predicted from the resummed
distribution are confirmed by the fixed order distributions allowing a precise
extraction of the unknown soft function coefficients. A number of quantitative
and qualitative comparisons of heavy jet mass and the related thrust
distribution are made. From fitting to ALEPH data, a value of alpha_s is
extracted, alpha_s(m_Z)=0.1220 +/- 0.0031, which is larger than, but not in
conflict with, the corresponding value for thrust. A weighted average of the
two produces alpha_s(m_Z) = 0.1193 +/- 0.0027, consistent with the world
average. A study of the non-perturbative corrections shows that the flat
direction observed for thrust between alpha_s and a simple non-perturbative
shape parameter is not lifted in combining with heavy jet mass. The Monte Carlo
treatment of hadronization gives qualitatively different results for thrust and
heavy jet mass, and we conclude that it cannot be trusted to add power
corrections to the event shape distributions at this accuracy. Whether a more
sophisticated effective field theory approach to power corrections can
reconcile the thrust and heavy jet mass distributions remains an open question.Comment: 33 pages, 14 figures. v2 added effect of lower numerical cutoff with
improved extraction of the soft function constants; power correction
discussion clarified. v3 small typos correcte
Jet Shapes and Jet Algorithms in SCET
Jet shapes are weighted sums over the four-momenta of the constituents of a
jet and reveal details of its internal structure, potentially allowing
discrimination of its partonic origin. In this work we make predictions for
quark and gluon jet shape distributions in N-jet final states in e+e-
collisions, defined with a cone or recombination algorithm, where we measure
some jet shape observable on a subset of these jets. Using the framework of
Soft-Collinear Effective Theory, we prove a factorization theorem for jet shape
distributions and demonstrate the consistent renormalization-group running of
the functions in the factorization theorem for any number of measured and
unmeasured jets, any number of quark and gluon jets, and any angular size R of
the jets, as long as R is much smaller than the angular separation between
jets. We calculate the jet and soft functions for angularity jet shapes \tau_a
to one-loop order (O(alpha_s)) and resum a subset of the large logarithms of
\tau_a needed for next-to-leading logarithmic (NLL) accuracy for both cone and
kT-type jets. We compare our predictions for the resummed \tau_a distribution
of a quark or a gluon jet produced in a 3-jet final state in e+e- annihilation
to the output of a Monte Carlo event generator and find that the dependence on
a and R is very similar.Comment: 62 pages plus 21 pages of Appendices, 13 figures, uses JHEP3.cls. v2:
corrections to finite parts of NLO jet functions, minor changes to plots,
clarified discussion of power corrections. v3: Journal version. Introductory
sections significantly reorganized for clarity, classification of logarithmic
accuracy clarified, results for non-Mercedes-Benz configurations adde
- …