1,865 research outputs found

    A unified first-principles study of Gilbert damping, spin-flip diffusion and resistivity in transition metal alloys

    Get PDF
    Using a formulation of first-principles scattering theory that includes disorder and spin-orbit coupling on an equal footing, we calculate the resistivity ρ\rho, spin flip diffusion length lsfl_{sf} and the Gilbert damping parameter α\alpha for Ni1x_{1-x}Fex_x substitutional alloys as a function of xx. For the technologically important Ni80_{80}Fe20_{20} alloy, permalloy, we calculate values of ρ=3.5±0.15\rho = 3.5 \pm 0.15 μ\muOhm-cm, lsf=5.5±0.3l_{sf}=5.5 \pm 0.3 nm, and α=0.0046±0.0001\alpha= 0.0046 \pm 0.0001 compared to experimental low-temperature values in the range 4.24.84.2-4.8 μ\muOhm-cm for ρ\rho, 5.06.05.0-6.0 nm for lsfl_{sf}, and 0.0040.0130.004-0.013 for α\alpha indicating that the theoretical formalism captures the most important contributions to these parameters.Comment: Published in Physical Review Letter

    Association between infectious burden, socioeconomic status, and ischemic stroke

    Get PDF
    Background and aims: Infectious diseases contribute to stroke risk, and are associated with socioeconomic status (SES). We tested the hypotheses that the aggregate burden of infections increases the risk of ischemic stroke (IS) and partly explains the association between low SES and ischemic stroke. Methods: In a case-control study with 470 ischemic stroke patients and 809 age- and sex-matched controls, randomly selected from the population, antibodies against the periodontal microbial agents Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, against Chlamydia pneumonia, Mycoplasma pneumoniae (IgA and IgG), and CagA-positive Helicobacter pylori (IgG) were assessed. Results: IgA seropositivity to two microbial agents was significantly associated with IS after adjustment for SES (OR 1.45 95% CI 1.01-2.08), but not in the fully adjusted model (OR 1.32 95% CI 0.86-2.02). By trend, cumulative IgA seropositivity was associated with stroke due to large vessel disease (LVD) after full adjustment (OR 1.88, 95% CI 0.96e3.69). Disadvantageous childhood SES was associated with higher cumulative seropositivity in univariable analyses, however, its strong impact on stroke risk was not influenced by seroepidemiological data in the multivariable model. The strong association between adulthood SES and stroke was rendered nonsignificant when factors of dental care were adjusted for. Conclusions: Infectious burden assessed with five microbial agents did not independently contribute to ischemic stroke consistently, but may contribute to stroke due to LVD. High infectious burden may not explain the association between childhood SES and stroke risk. Lifestyle factors that include dental negligence may contribute to the association between disadvantageous adulthood SES and stroke. (C) 2016 Elsevier Ireland Ltd. All rights reserved.Peer reviewe

    A shared compilation stack for distributed-memory parallelism in stencil DSLs

    Full text link
    Domain Specific Languages (DSLs) increase programmer productivity and provide high performance. Their targeted abstractions allow scientists to express problems at a high level, providing rich details that optimizing compilers can exploit to target current- and next-generation supercomputers. The convenience and performance of DSLs come with significant development and maintenance costs. The siloed design of DSL compilers and the resulting inability to benefit from shared infrastructure cause uncertainties around longevity and the adoption of DSLs at scale. By tailoring the broadly-adopted MLIR compiler framework to HPC, we bring the same synergies that the machine learning community already exploits across their DSLs (e.g. Tensorflow, PyTorch) to the finite-difference stencil HPC community. We introduce new HPC-specific abstractions for message passing targeting distributed stencil computations. We demonstrate the sharing of common components across three distinct HPC stencil-DSL compilers: Devito, PSyclone, and the Open Earth Compiler, showing that our framework generates high-performance executables based upon a shared compiler ecosystem

    Matrix Metalloproteinase-Mediated Blood-Brain Barrier Dysfunction in Epilepsy

    Get PDF
    The blood-brain barrier is dysfunctional in epilepsy, thereby contributing to seizure genesis and resistance to antiseizure drugs. Previously, several groups reported that seizures increase brain glutamate levels, which leads to barrier dysfunction. One critical component of barrier dysfunction is brain capillary leakage. Based on our preliminary data, we hypothesized that glutamate released during seizures mediates an increase in matrix-metalloproteinase (MMP) expression and activity levels, thereby contributing to barrier leakage. To test this hypothesis, we exposed isolated brain capillaries from male Sprague Dawley rats to glutamate ex vivo and used an in vivo/ex vivo approach of isolated brain capillaries from female Wistar rats that experienced status epilepticus as an acute seizure model. We found that exposing isolated rat brain capillaries to glutamate increased MMP-2 and MMP-9 protein and activity levels, and decreased tight junction protein levels, which resulted in barrier leakage. We confirmed these findings in vivo in rats after status epilepticus and in brain capillaries from male mice lacking cytosolic phospholipase A2. Together, our data support the hypothesis that glutamate released during seizures signals an increase in MMP-2 and MMP-9 protein expression and activity levels, resulting in blood-brain barrier leakage

    Characterization of grain boundaries in multicrystalline silicon with high lateral resolution using conductive atomic force microscopy

    Get PDF
    In this work, the electrical characteristics of grain boundaries (GBs) in multicrystalline silicon with and without iron contamination are analyzed by fixed voltage current maps and local I/V curves using conductive AFM (cAFM). I/V characteristics reveal the formation of a Schottky contact between the AFM tip and the sample surface. The impact of both, the polarity of the applied voltage and the illumination by the AFM laser on the behavior of GBs was analyzed systematically. Depending on the polarity of the applied voltage and the iron content of the sample, grain boundaries alter significantly the recorded current flow compared to the surrounding material. The results also show a clear influence of the AFM laser light on the electrical behavior of the grain boundaries. Conductive AFM measurements are furthermore compared to data obtained by electron beam induced current (EBIC), indicating that cAFM provides complimentary information

    The Nature of Optically Dull Active Galactic Nuclei in COSMOS

    Get PDF
    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull AGNs in the COSMOS field. These objects exhibit the X-ray luminosity of an active galactic nucleus (AGN) but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well-described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to ~70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining ~30% of optically dull AGNs have anomalously high f_x/f_o ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.Comment: 12 pages, 10 figures. Accepted for publication in the Ap

    Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human Natural Killer cells

    Get PDF
    It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions

    AEGIS: Demographics of X-ray and Optically Selected AGNs

    Full text link
    We develop a new diagnostic method to classify galaxies into AGN hosts, star-forming galaxies, and absorption-dominated galaxies by combining the [O III]/Hbeta ratio with rest-frame U-B color. This can be used to robustly select AGNs in galaxy samples at intermediate redshifts (z<1). We compare the result of this optical AGN selection with X-ray selection using a sample of 3150 galaxies with 0.3<z<0.8 and I_AB<22, selected from the DEEP2 Galaxy Redshift Survey and the All-wavelength Extended Groth Strip International Survey (AEGIS). Among the 146 X-ray sources in this sample, 58% are classified optically as emission-line AGNs, the rest as star-forming galaxies or absorption-dominated galaxies. The latter are also known as "X-ray bright, optically normal galaxies" (XBONGs). Analysis of the relationship between optical emission lines and X-ray properties shows that the completeness of optical AGN selection suffers from dependence on the star formation rate and the quality of observed spectra. It also shows that XBONGs do not appear to be a physically distinct population from other X-ray detected, emission-line AGNs. On the other hand, X-ray AGN selection also has strong bias. About 2/3 of all emission-line AGNs at L_bol>10^44 erg/s in our sample are not detected in our 200 ks Chandra images, most likely due to moderate or heavy absorption by gas near the AGN. The 2--7 keV detection rate of Seyfert 2s at z~0.6 suggests that their column density distribution and Compton-thick fraction are similar to that of local Seyferts. Multiple sample selection techniques are needed to obtain as complete a sample as possible.Comment: 24 pages, 14 figures, submitted to ApJ. Version 2 matches the ApJ accepted version. Sec 3 was reorganized and partly rewritten with one additional figure (Fig.3

    SHARPIN Negatively Associates with TRAF2-Mediated NFκB Activation

    Get PDF
    NFκB is an inducible transcriptional factor controlled by two principal signaling cascades and plays pivotal roles in diverse physiological processes including inflammation, apoptosis, oncogenesis, immunity, and development. Activation of NFκB signaling was detected in skin of SHAPRIN-deficient mice and can be diminished by an NFκB inhibitor. However, in vitro studies demonstrated that SHARPIN activates NFκB signaling by forming a linear ubiquitin chain assembly complex with RNF31 (HOIP) and RBCK1 (HOIL1). The inconsistency between in vivo and in vitro findings about SHARPIN's function on NFκB activation could be partially due to SHARPIN's potential interactions with downstream molecules of NFκB pathway. In this study, 17 anti-flag immunoprecipitated proteins, including TRAF2, were identified by mass spectrum analysis among Sharpin-Flag transfected mouse fibroblasts, B lymphocytes, and BALB/c LN stroma 12 cells suggesting their interaction with SHARPIN. Interaction between SHARPIN and TRAF2 confirmed previous yeast two hybridization reports that SHARPIN was one TRAF2's partners. Furthermore, luciferase-based NFκB reporter assays demonstrated that SHARPIN negatively associates with NFκB activation, which can be partly compensated by over-expression of TRAF2. These data suggested that other than activating NFκB signaling by forming ubiquitin ligase complex with RNF31 and RBCK1, SHARPIN may also negatively associate with NFκB activation via interactions with other NFκB members, such as TRAF2
    corecore