288 research outputs found
Vocal development in a large‐scale crosslinguistic corpus
This study evaluates whether early vocalizations develop in similar ways in children across diverse cultural contexts. We analyze data from daylong audio recordings of 49 children (1–36 months) from five different language/cultural backgrounds. Citizen scientists annotated these recordings to determine if child vocalizations contained canonical transitions or not (e.g., “ba” vs. “ee”). Results revealed that the proportion of clips reported to contain canonical transitions increased with age. Furthermore, this proportion exceeded 0.15 by around 7 months, replicating and extending previous findings on canonical vocalization development but using data from the natural environments of a culturally and linguistically diverse sample. This work explores how crowdsourcing can be used to annotate corpora, helping establish developmental milestones relevant to multiple languages and cultures. Lower inter‐annotator reliability on the crowdsourcing platform, relative to more traditional in‐lab expert annotators, means that a larger number of unique annotators and/or annotations are required, and that crowdsourcing may not be a suitable method for more fine‐grained annotation decisions. Audio clips used for this project are compiled into a large‐scale infant vocalization corpus that is available for other researchers to use in future work
Scattering of second sound waves by quantum vorticity
A new method of detection and measurement of quantum vorticity by scattering
second sound off quantized vortices in superfluid Helium is suggested.
Theoretical calculations of the relative amplitude of the scattered second
sound waves from a single quantum vortex, a vortex ring, and bulk vorticity are
presented. The relevant estimates show that an experimental verification of the
method is feasible. Moreover, it can even be used for the detection of a single
quantum vortex.Comment: Latex file, 9 page
Probing quantum and classical turbulence analogy through global bifurcations in a von K\'arm\'an liquid Helium experiment
We report measurements of the dissipation in the Superfluid Helium high
REynold number von Karman flow (SHREK) experiment for different forcing
conditions, through a regime of global hysteretic bifurcation. Our
macroscopical measurements indicate no noticeable difference between the
classical fluid and the superfluid regimes, thereby providing evidence of the
same dissipative anomaly and response to asymmetry in fluid and superfluid
regime. %In the latter case, A detailed study of the variations of the
hysteretic cycle with Reynolds number supports the idea that (i) the stability
of the bifurcated states of classical turbulence in this closed flow is partly
governed by the dissipative scales and (ii) the normal and the superfluid
component at these temperatures (1.6K) are locked down to the dissipative
length scale.Comment: 5 pages, 5 figure
SMSLib - biblioteca C++ do Sting Millennium Suite.
Organização lógica do SMS. Descrição da SMSLib. Leitura de arquivos PDB. Leitura de arquivos HSSP. Leitura de arquivos com parâmetros simples. Cálculo e leitura de contatos. Cálculo e leitura de Dihedral Angels.bitstream/CNPTIA/9898/1/comuntec39.pdfAcesso em: 30 maio 2008
Experiência de utilização de XML no SMS.
XML e sua utilização em aplicações de bioinformática. Utilização de XML no módulo JPD do SMS. Discussão e trabalhos futuros.bitstream/CNPTIA/9891/1/comuntec32.pdfAcesso em: 30 maio 2008
Scattering of first and second sound waves by quantum vorticity in superfluid Helium
We study the scattering of first and second sound waves by quantum vorticity
in superfluid Helium using two-fluid hydrodynamics. The vorticity of the
superfluid component and the sound interact because of the nonlinear character
of these equations. Explicit expressions for the scattered pressure and
temperature are worked out in a first Born approximation, and care is exercised
in delimiting the range of validity of the assumptions needed for this
approximation to hold. An incident second sound wave will partly convert into
first sound, and an incident first sound wave will partly convert into second
sound. General considerations show that most incident first sound converts into
second sound, but not the other way around. These considerations are validated
using a vortex dipole as an explicitely worked out example.Comment: 24 pages, Latex, to appear in Journal of Low Temperature Physic
A Cryogenic High-Reynolds Turbulence Experiment at CERN
The potential of cryogenic helium flows for studying high-Reynolds number turbulence in the laboratory has been recognised for a long time and implemented in several small-scale hydrodynamic experiments. With its large superconducting particle accelerators and detector magnets, CERN, the European Laboratory for Particle Physics, has become a major world center in helium cryogenics, with several large helium refrigerators having capacities up to 18 kW @ 4.5 K. Combining a small fraction of these resources with the expertise of three laboratories at the forefront of turbulence research, has led to the design, swift implementation, and successful operation of GReC (Grands Reynolds Cryogéniques) a large axisymmetric turbulent-jet experiment. With flow-rates up to 260 g/s of gaseous helium at ~ 5 K and atmospheric pressure, Reynolds numbers up to 107 have been achieved in a 4.6 m high, 1.4 m diameter cryostat. This paper presents the results of the first runs and describes the experimental set-up comprehensively equipped with "hot" wire micro-anemometers, acoustic scattering vorticity measurements and a large-bandwidth data acquisition system
STING Millennium: a web-based suite of programs for comprehensive and simultaneous analysis of protein structure and sequence.
Sting Millennium suite intrinsics. SMS organization. Sting Millennium Modes. Sting Millennium Modules. Millennium Features. Example of Sting Millennium Application.Na publicação: Paula R. Kuser
- …