288 research outputs found

    Vocal development in a large‐scale crosslinguistic corpus

    Get PDF
    This study evaluates whether early vocalizations develop in similar ways in children across diverse cultural contexts. We analyze data from daylong audio recordings of 49 children (1–36 months) from five different language/cultural backgrounds. Citizen scientists annotated these recordings to determine if child vocalizations contained canonical transitions or not (e.g., “ba” vs. “ee”). Results revealed that the proportion of clips reported to contain canonical transitions increased with age. Furthermore, this proportion exceeded 0.15 by around 7 months, replicating and extending previous findings on canonical vocalization development but using data from the natural environments of a culturally and linguistically diverse sample. This work explores how crowdsourcing can be used to annotate corpora, helping establish developmental milestones relevant to multiple languages and cultures. Lower inter‐annotator reliability on the crowdsourcing platform, relative to more traditional in‐lab expert annotators, means that a larger number of unique annotators and/or annotations are required, and that crowdsourcing may not be a suitable method for more fine‐grained annotation decisions. Audio clips used for this project are compiled into a large‐scale infant vocalization corpus that is available for other researchers to use in future work

    Scattering of second sound waves by quantum vorticity

    Full text link
    A new method of detection and measurement of quantum vorticity by scattering second sound off quantized vortices in superfluid Helium is suggested. Theoretical calculations of the relative amplitude of the scattered second sound waves from a single quantum vortex, a vortex ring, and bulk vorticity are presented. The relevant estimates show that an experimental verification of the method is feasible. Moreover, it can even be used for the detection of a single quantum vortex.Comment: Latex file, 9 page

    Probing quantum and classical turbulence analogy through global bifurcations in a von K\'arm\'an liquid Helium experiment

    Get PDF
    We report measurements of the dissipation in the Superfluid Helium high REynold number von Karman flow (SHREK) experiment for different forcing conditions, through a regime of global hysteretic bifurcation. Our macroscopical measurements indicate no noticeable difference between the classical fluid and the superfluid regimes, thereby providing evidence of the same dissipative anomaly and response to asymmetry in fluid and superfluid regime. %In the latter case, A detailed study of the variations of the hysteretic cycle with Reynolds number supports the idea that (i) the stability of the bifurcated states of classical turbulence in this closed flow is partly governed by the dissipative scales and (ii) the normal and the superfluid component at these temperatures (1.6K) are locked down to the dissipative length scale.Comment: 5 pages, 5 figure

    SMSLib - biblioteca C++ do Sting Millennium Suite.

    Get PDF
    Organização lógica do SMS. Descrição da SMSLib. Leitura de arquivos PDB. Leitura de arquivos HSSP. Leitura de arquivos com parâmetros simples. Cálculo e leitura de contatos. Cálculo e leitura de Dihedral Angels.bitstream/CNPTIA/9898/1/comuntec39.pdfAcesso em: 30 maio 2008

    Experiência de utilização de XML no SMS.

    Get PDF
    XML e sua utilização em aplicações de bioinformática. Utilização de XML no módulo JPD do SMS. Discussão e trabalhos futuros.bitstream/CNPTIA/9891/1/comuntec32.pdfAcesso em: 30 maio 2008

    Scattering of first and second sound waves by quantum vorticity in superfluid Helium

    Full text link
    We study the scattering of first and second sound waves by quantum vorticity in superfluid Helium using two-fluid hydrodynamics. The vorticity of the superfluid component and the sound interact because of the nonlinear character of these equations. Explicit expressions for the scattered pressure and temperature are worked out in a first Born approximation, and care is exercised in delimiting the range of validity of the assumptions needed for this approximation to hold. An incident second sound wave will partly convert into first sound, and an incident first sound wave will partly convert into second sound. General considerations show that most incident first sound converts into second sound, but not the other way around. These considerations are validated using a vortex dipole as an explicitely worked out example.Comment: 24 pages, Latex, to appear in Journal of Low Temperature Physic

    A Cryogenic High-Reynolds Turbulence Experiment at CERN

    Get PDF
    The potential of cryogenic helium flows for studying high-Reynolds number turbulence in the laboratory has been recognised for a long time and implemented in several small-scale hydrodynamic experiments. With its large superconducting particle accelerators and detector magnets, CERN, the European Laboratory for Particle Physics, has become a major world center in helium cryogenics, with several large helium refrigerators having capacities up to 18 kW @ 4.5 K. Combining a small fraction of these resources with the expertise of three laboratories at the forefront of turbulence research, has led to the design, swift implementation, and successful operation of GReC (Grands Reynolds Cryogéniques) a large axisymmetric turbulent-jet experiment. With flow-rates up to 260 g/s of gaseous helium at ~ 5 K and atmospheric pressure, Reynolds numbers up to 107 have been achieved in a 4.6 m high, 1.4 m diameter cryostat. This paper presents the results of the first runs and describes the experimental set-up comprehensively equipped with "hot" wire micro-anemometers, acoustic scattering vorticity measurements and a large-bandwidth data acquisition system
    corecore