6,058 research outputs found
Honk if you love book reviews! Looking back at 10 years of book reviews in The Goose
This editorial looks back at 10 years of book reviews in The Goose to consider how book reviews have helped to shape the landscape of Canadian ecocriticism. It also looks forward to suggest how book reviews will continue to be an integral part of The Goose
The Environmental Humanities in a Post-Truth World
Editorial introduction to The Goose Volume 15, Issue 2 (2017)
Responding to a Racist Climate: An Editorial
Editorial introduction to The Goose Volume 16, Issue 1 (2017)
Editor\u27s Notebook
Editorial introduction to The Goose Volume 15, Issue 1 (2016)
Quantum heat fluctuations of single particle sources
Optimal single electron sources emit regular streams of particles, displaying
no low frequency charge current noise. Due to the wavepacket nature of the
emitted particles, the energy is however fluctuating, giving rise to heat
current noise. We investigate theoretically this quantum source of heat noise
for an emitter coupled to an electronic probe in the hot-electron regime. The
distribution of temperature and potential fluctuations induced in the probe is
shown to provide direct information on the single particle wavefunction
properties and display strong non-classical features.Comment: 5 pages, 2 figure
Planar L-Drawings of Directed Graphs
We study planar drawings of directed graphs in the L-drawing standard. We
provide necessary conditions for the existence of these drawings and show that
testing for the existence of a planar L-drawing is an NP-complete problem.
Motivated by this result, we focus on upward-planar L-drawings. We show that
directed st-graphs admitting an upward- (resp. upward-rightward-) planar
L-drawing are exactly those admitting a bitonic (resp. monotonically
increasing) st-ordering. We give a linear-time algorithm that computes a
bitonic (resp. monotonically increasing) st-ordering of a planar st-graph or
reports that there exists none.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
The Partial Visibility Representation Extension Problem
For a graph , a function is called a \emph{bar visibility
representation} of when for each vertex , is a
horizontal line segment (\emph{bar}) and iff there is an
unobstructed, vertical, -wide line of sight between and
. Graphs admitting such representations are well understood (via
simple characterizations) and recognizable in linear time. For a directed graph
, a bar visibility representation of , additionally, puts the bar
strictly below the bar for each directed edge of
. We study a generalization of the recognition problem where a function
defined on a subset of is given and the question is whether
there is a bar visibility representation of with for every . We show that for undirected graphs this problem
together with closely related problems are \NP-complete, but for certain cases
involving directed graphs it is solvable in polynomial time.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Weather, Weathering, Weathered: Editors\u27 Notebook
Editorial introduction to The Goose Volume 17, Issue 1 (2018)
Application of the exact regularized point particle method (ERPP) to particle laden turbulent shear flows in the two-way coupling regime
The Exact Regularized Point Particle method (ERPP), which is a new inter-phase momentum coupling ap- proach, is extensively used for the first time to explore the response of homogeneous shear turbulence in presence of different particle populations. Particle suspensions with different Stokes number and/or mass loading are considered. Particles with Kolmogorov Stokes number of order one suppress turbulent kinetic energy when the mass loading is increased. In contrast, heavier particles leave this observable almost un- changed with respect to the reference uncoupled case. Turbulence modulation is found to be anisotropic, leaving the streamwise velocity fluctuations less affected by unitary Stokes number particles whilst it is increased by heavier particles. The analysis of the energy spectra shows that the turbulence modulation occurs throughout the entire range of resolved scales leading to non-trivial augmentation/depletion of the energy content among the different velocity components at different length-scales. In this regard, the ERPP approach is able to provide convergent statistics up to the smallest dissipative scales of the flow, giving the opportunity to trust the ensuing results. Indeed, a substantial modification of the turbu- lent fluctuations at the smallest-scales, i.e. at the level of the velocity gradients, is observed due to the particle backreaction. Small scale anisotropies are enhanced and fluctuations show a greater level of in- termittency as measured by the probability distribution function of the longitudinal velocity increments and by the corresponding flatness
Editors\u27 Notebook
Editorial introduction to The Goose Volume 16, Issue 2 (2018)
- …