417 research outputs found

    Elementary structural building blocks encountered in silicon surface reconstructions

    Full text link
    Driven by the reduction of dangling bonds and the minimization of surface stress, reconstruction of silicon surfaces leads to a striking diversity of outcomes. Despite this variety even very elaborate structures are generally comprised of a small number of structural building blocks. We here identify important elementary building blocks and discuss their integration into the structural models as well as their impact on the electronic structure of the surface

    When data are not missing at random: implications for measuring health conditions in the Behavioral Risk Factor Surveillance System

    Get PDF
    Objectives To examine the effect on estimated levels of health conditions produced from large-scale surveys, when either list-wise respondent deletion or standard demographic item-level imputation is employed. To assess the degree to which further bias reduction results from the inclusion of correlated ancillary variables in the item imputation process. Design Large cross-sectional (US level) household survey. Participants 218 726 US adults (18 years and older) in the 2006 Behavioral Risk Factor Surveillance System Survey. This survey is the largest US telephone survey conducted by the Centers for Disease Control and Prevention. Primary and secondary outcome measures Estimated rates of severe depression among US adults. Results The use of list-wise respondent deletion and/or demographic imputation results in the underestimation of severe depression among adults in the USA. List-wise deletion produces underestimates of 9% (8.7% vs 9.5%). Demographic imputation produces underestimates of 7% (8.9% vs 9.5%). Both of these differences are significant at the 0.05 level. Conclusion The use of list-wise deletion and/or demographic-only imputation may produce significant distortion in estimating national levels of certain health conditions

    Fermi surface induced lattice distortion in NbTe2_2

    Full text link
    The origin of the monoclinic distortion and domain formation in the quasi two-dimensional layer compound NbTe2_2 is investigated. Angle-resolved photoemission shows that the Fermi surface is pseudogapped over large portions of the Brillouin zone. Ab initio calculation of the electron and phonon bandstructure as well as the static RPA susceptibility lead us to conclude that Fermi surface nesting and electron-phonon coupling play a key role in the lowering of the crystal symmetry and in the formation of the charge density wave phase

    The Atacama Cosmology Telescope: A Measurement of the Thermal Sunyaev-Zel'dovich Effect Using the Skewness of the CMB Temperature Distribution

    Get PDF
    We present a detection of the unnormalized skewness induced by the thermal Sunyaev-Zel'dovich (tSZ) effect in filtered Atacama Cosmology Telescope (ACT) 148 GHz cosmic microwave background temperature maps. Contamination due to infrared and radio sources is minimized by template subtraction of resolved sources and by constructing a mask using outlying values in the 218 GHz (tSZ-null) ACT maps. We measure = -31 +- 6 \mu K^3 (measurement error only) or +- 14 \mu K^3 (including cosmic variance error) in the filtered ACT data, a 5-sigma detection. We show that the skewness is a sensitive probe of sigma_8, and use analytic calculations and tSZ simulations to obtain cosmological constraints from this measurement. From this signal alone we infer a value of sigma_8= 0.79 +0.03 -0.03 (68 % C.L.) +0.06 -0.06 (95 % C.L.). Our results demonstrate that measurements of non-Gaussianity can be a useful method for characterizing the tSZ effect and extracting the underlying cosmological information.Comment: 9 pages, 5 figures. Replaced with version accepted by Phys. Rev. D, with improvements to the likelihood function and the IR source treatment; only minor changes in the result

    The Atacama Cosmology Telescope: the stellar content of galaxy clusters selected using the Sunyaev-Zel'dovich effect

    Full text link
    We present a first measurement of the stellar mass component of galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect, using 3.6 um and 4.5 um photometry from the Spitzer Space Telescope. Our sample consists of 14 clusters detected by the Atacama Cosmology Telescope (ACT), which span the redshift range 0.27 < z < 1.07 (median z = 0.50), and have dynamical mass measurements, accurate to about 30 per cent, with median M500 = 6.9 x 10^{14} MSun. We measure the 3.6 um and 4.5 um galaxy luminosity functions, finding the characteristic magnitude (m*) and faint-end slope (alpha) to be similar to those for IR-selected cluster samples. We perform the first measurements of the scaling of SZ-observables (Y500 and y0) with both brightest cluster galaxy (BCG) stellar mass and total cluster stellar mass (M500star). We find a significant correlation between BCG stellar mass and Y500 (E(z)^{-2/3} DA^2 Y500 ~ M*^{1.2 +/- 0.6}), although we are not able to obtain a strong constraint on the slope of the relation due to the small sample size. Additionally, we obtain E(z)^{-2/3} DA^2 Y500 ~ M500star^{1.0 +/- 0.6} for the scaling with total stellar mass. The mass fraction in stars spans the range 0.006-0.034, with the second ranked cluster in terms of dynamical mass (ACT-CL J0237-4939) having an unusually low total stellar mass and the lowest stellar mass fraction. For the five clusters with gas mass measurements available in the literature, we see no evidence for a shortfall of baryons relative to the cosmic mean value.Comment: Accepted for publication in MNRAS; 12 pages, 10 figure

    The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data

    Full text link
    [Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsample of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14 Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters, the sample is studied further through a "Profile Based Amplitude Analysis" using a single filter at a fixed \theta_500 = 5.9' angular scale. This new approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the relationship between the cluster characteristic size (R_500) and the integrated Compton parameter (Y_500). The UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters is used to obtain cosmological constraints. We first confirm that constraints from SZ data are limited by uncertainty in the scaling relation parameters rather than sample size or measurement uncertainty. We next add in seven clusters from the ACT Southern survey, including their dynamical mass measurements based on galaxy velocity dispersions. In combination with WMAP7 these data simultaneously constrain the scaling relation and cosmological parameters, yielding \sigma_8 = 0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include marginalization over a 15% bias in dynamical mass relative to the true halo mass. In an extension to LCDM that incorporates non-zero neutrino mass density, we combine our data with WMAP7+BAO+Hubble constant measurements to constrain \Sigma m_\nu < 0.29 eV (95% C. L.).Comment: 32 pages, 21 figures To appear in J. Cosmology and Astroparticle Physic

    Diagnosing Spin at the LHC via Vector Boson Fusion

    Get PDF
    We propose a new technique for determining the spin of new massive particles that might be discovered at the Large Hadron Collider. The method relies on pair-production of the new particles in a kinematic regime where the vector boson fusion production mechanism is enhanced. For this regime, we show that the distribution of the leading jets as a function of their relative azimuthal angle can be used to distinguish spin-0 from spin-1/2 particles. We illustrate this effect by considering the particular cases of (i) strongly-interacting, stable particles and (ii) supersymmetric particles carrying color charge. We argue that this method should be applicable in a wide range of new physics scenarios.Comment: 5 pages, 4 figure

    Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey: Report of a Community Workshop Examining Extragalactic, Galactic, Stellar and Planetary Science

    Full text link
    SPHEREx is a proposed SMEX mission selected for Phase A. SPHEREx will carry out the first all-sky spectral survey and provide for every 6.2" pixel a spectra between 0.75 and 4.18 μ\mum [with R\sim41.4] and 4.18 and 5.00 μ\mum [with R\sim135]. The SPHEREx team has proposed three specific science investigations to be carried out with this unique data set: cosmic inflation, interstellar and circumstellar ices, and the extra-galactic background light. It is readily apparent, however, that many other questions in astrophysics and planetary sciences could be addressed with the SPHEREx data. The SPHEREx team convened a community workshop in February 2016, with the intent of enlisting the aid of a larger group of scientists in defining these questions. This paper summarizes the rich and varied menu of investigations that was laid out. It includes studies of the composition of main belt and Trojan/Greek asteroids; mapping the zodiacal light with unprecedented spatial and spectral resolution; identifying and studying very low-metallicity stars; improving stellar parameters in order to better characterize transiting exoplanets; studying aliphatic and aromatic carbon-bearing molecules in the interstellar medium; mapping star formation rates in nearby galaxies; determining the redshift of clusters of galaxies; identifying high redshift quasars over the full sky; and providing a NIR spectrum for most eROSITA X-ray sources. All of these investigations, and others not listed here, can be carried out with the nominal all-sky spectra to be produced by SPHEREx. In addition, the workshop defined enhanced data products and user tools which would facilitate some of these scientific studies. Finally, the workshop noted the high degrees of synergy between SPHEREx and a number of other current or forthcoming programs, including JWST, WFIRST, Euclid, GAIA, K2/Kepler, TESS, eROSITA and LSST.Comment: Report of the First SPHEREx Community Workshop, http://spherex.caltech.edu/Workshop.html , 84 pages, 28 figure

    The Atacama Cosmology Telescope: Dynamical Masses and Scaling Relations for a Sample of Massive Sunyaev-Zel'dovich Effect Selected Galaxy Clusters

    Get PDF
    We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 sq. deg. area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R~700-800) spectra and redshifts for ~60 member galaxies on average per cluster. The dynamical masses M_200c of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z=0.50 and a median mass M_200c~12e14 Msun/h70 with a lower limit M_200c~6e14 Msun/h70, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y, the central Compton parameter y0, and the integrated Compton signal Y_200c, which we use to derive SZE-Mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter (<~20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the 3-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that ~50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations but given the current sample sizes these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations.Comment: 15 pages, 4 figures. Accepted for publication in The Astrophysical Journal; matches published version. Full Table 8 with complete spectroscopic member sample available in machine-readable form in the journal site and upon request to C. Sif\'o

    Metabotropic glutamate receptors in GtoPdb v.2023.1

    Get PDF
    Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [351]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate [140]. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. mGlu form constitutive dimers, cross-linked by a disulfide bridge. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [200, 275, 268, 403]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organisation similar to that of other GPCRs, although the helices appear more compacted [88, 433, 62]. Recent advances in cryo-electron microscopy have provided structures of full-length mGlu receptor homodimers [217, 191] and heterodimers [91]. Studies have revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [89]. First characterised in transfected cells, co-localisation and specific pharmacological properties suggest the existence of such heterodimers in the brain [270, 440, 145, 283, 259, 218]. Beyond heteromerisation with other mGlu receptor subtypes, increasing evidence suggests mGlu receptors form heteromers and larger order complexes with class A GPCRs (reviewed in [140]). The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [30] and antagonised by (S)-hexylhomoibotenic acid [235]. Group-II mGlu receptors may be activated by LY389795 [269], LY379268 [269], eglumegad [354, 434], DCG-IV and (2R,3R)-APDC [355], and antagonised by eGlu [170] and LY307452 [425, 105]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [130]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [185]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as &#8216;potentiators&#8217; of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist
    corecore