60 research outputs found
Diagnosing Emerging Fungal Threats: A One Health Perspective
Emerging fungal pathogens are a growing threat to global health, ecosystems, food security, and the world economy. Over the last century, environmental change and globalized transport, twinned with the increasing application of antifungal chemical drugs have led to increases in outbreaks of fungal diseases with sometimes catastrophic effects. In order to tackle contemporary epidemics and predemic threats, there is a pressing need for a unified approach in identification and monitoring of fungal pathogens. In this paper, we discuss current high throughput technologies, as well as new platforms capable of combining diverse data types to inform practical epidemiological strategies with a focus on emerging fungal pathogens of wildlife
Rapid evolution of a novel protective symbiont into keystone taxon in Caenorhabditis elegans microbiota
Protective microbes have a major role in shaping host–pathogen interactions, but their relative importance in the structure of the host microbiota remains unclear. Here, we used a network approach to characterize the impact of a novel, experimentally evolved ‘protective microbial symbiont’ (Enterococcus faecalis) on the structure and predicted function of the natural microbiota of the model organism Caenorhabditis elegans. We used microbial network analysis to identify keystone taxa and describe the hierarchical placement of protective and non-protective symbionts in the microbiota. We found that early colonization with symbionts produce statistically significant changes in the structure of the community. Notably, only the protective E. faecalis became a keystone taxon in the nematode microbiota. Non-protective lineages of the same bacterial species remained comparatively unimportant to the community. Prediction of functional profiles in bacterial communities using PICRUSt2 showed that the presence of highly protective E. faecalis decreased the abundance of ergothioneine (EGT) biosynthesis pathway involved in the synthesis of the antioxidant molecule EGT, a potential public good. These data show that in addition to direct antagonism with virulent pathogens, keystone protective symbionts are linked to modified bacterial community structure and possible reductions in public goods, potentially driving decreased antioxidant defense. We suggest that this response could suppress infection via wholesale microbial community changes to further benefit the host. These findings extend the concept of protective symbionts beyond bodyguards to ecosystem engineers
Recommended from our members
Captivity and Infection by the Fungal Pathogen Batrachochytrium salamandrivorans Perturb the Amphibian Skin Microbiome.
The emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal) is responsible for the catastrophic decline of European salamanders and poses a threat to amphibians globally. The amphibian skin microbiome can influence disease outcome for several host-pathogen systems, yet little is known of its role in Bsal infection. In addition, many experimental in-vivo amphibian disease studies to date have relied on specimens that have been kept in captivity for long periods without considering the influence of environment on the microbiome and how this may impact the host response to pathogen exposure. We characterized the impact of captivity and exposure to Bsal on the skin bacterial and fungal communities of two co-occurring European newt species, the smooth newt, Lissotriton vulgaris and the great-crested newt, Triturus cristatus. We show that captivity led to significant losses in bacterial and fungal diversity of amphibian skin, which may be indicative of a decline in microbe-mediated protection. We further demonstrate that in both L. vulgaris and T. cristatus, Bsal infection was associated with changes in the composition of skin bacterial communities with possible negative consequences to host health. Our findings advance current understanding of the role of host-associated microbiota in Bsal infection and highlight important considerations for ex-situ amphibian conservation programmes
Microbiome function predicts amphibian chytridiomycosis disease dynamics
[Background] The fungal pathogenBatrachochytrium dendrobatidis (Bd) threatens amphibian biodiversity and ecosystem stability worldwide. Amphibian skin microbial community structure has been linked to the clinical outcome of Bd infections, yet its overall functional importance is poorly understood. [Methods] Microbiome taxonomic and functional profiles were assessed using high-throughput bacterial 16S rRNA and fungal ITS2 gene sequencing, bacterial shotgun metagenomics and skin mucosal metabolomics. We sampled 56 wild midwife toads (Alytes obstetricans) from montane populations exhibiting Bd epizootic or enzootic disease dynamics. In addition, to assess whether disease-specific microbiome profiles were linked to microbe-mediated protection or Bd-induced perturbation, we performed a laboratory Bd challenge experiment whereby 40 young adult A. obstetricans were exposed to Bd or a control sham infection. We measured temporal changes in the microbiome as well as functional profiles of Bd-exposed and control animals at peak infection. [Results] Microbiome community structure and function differed in wild populations based on infection history and in experimental control versus Bd-exposed animals. Bd exposure in the laboratory resulted in dynamic changes in microbiome community structure and functional differences, with infection clearance in all but one infected animal. Sphingobacterium, Stenotrophomonas and an unclassified Commamonadaceae were associated with wild epizootic dynamics and also had reduced abundance in laboratory Bd-exposed animals that cleared infection, indicating a negative association with Bd resistance. This was further supported by microbe-metabolite integration which identified functionally relevant taxa driving disease outcome, of which Sphingobacterium and Bd were most influential in wild epizootic dynamics. The strong correlation between microbial taxonomic community composition and skin metabolome in the laboratory and field is inconsistent with microbial functional redundancy, indicating that differences in microbial taxonomy drive functional variation. Shotgun metagenomic analyses support these findings, with similar disease-associated patterns in beta diversity. Analysis of differentially abundant bacterial genes and pathways indicated that bacterial environmental sensing and Bd resource competition are likely to be important in driving infection outcomes. [Conclusions] Bd infection drives altered microbiome taxonomic and functional profiles across laboratory and field environments. Our application of multi-omics analyses in experimental and field settings robustly predicts Bd disease dynamics and identifies novel candidate biomarkers of infection. [MediaObject not available: see fulltext.]K.A.B. was funded by a CASE studentship from NERC, NERC Biomolecular Analysis Facility grant (NBAF939) and an E.P. Abraham Junior Research Fellowship from St Hilda’s College, University of Oxford. M.C.F and T.W.J.G. were funded by NERC award NE/E006701/1 and the Biodiversa project RACE: Risk Assessment of Chytridiomycosis to European Amphibian Biodiversity. T.W.J.G was also funded by Research England and NERC NE/S000062/1. D.S.S. and A.L. received funding through the project People, Pollution, and Pathogens financed through the call “Mountains as Sentinels of Change” by the Belmont-Forum (ANR-15-MASC-0001 - P3, DFG-SCHM3059/6-1, NERC-1633948, NSFC-41661144004). D.S.S. holds the AXA Chair for Functional Mountain Ecology funded by the AXA Research Fund through the project GloMEc and M.C.F. is a fellow in the CIFAR ‘Fungal Kingdoms’ Program
Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer
Breast cancer metastasis remains a clinical challenge, even within a single patient across multiple sites of the disease. Genome-wide comparisons of both the DNA and gene expression of primary tumors and metastases in multiple patients could help elucidate the underlying mechanisms that cause breast cancer metastasis. To address this issue, we performed DNA exome and RNA sequencing of matched primary tumors and multiple metastases from 16 patients, totaling 83 distinct specimens. We identified tumor-specific drivers by integrating known protein-protein network information with RNA expression and somatic DNA alterations and found that genetic drivers were predominantly established in the primary tumor and maintained through metastatic spreading. In addition, our analyses revealed that most genetic drivers were DNA copy number changes, the TP53 mutation was a recurrent founding mutation regardless of subtype, and that multiclonal seeding of metastases was frequent and occurred in multiple subtypes. Genetic drivers unique to metastasis were identified as somatic mutations in the estrogen and androgen receptor genes. These results highlight the complexity of metastatic spreading, be it monoclonal or multiclonal, and suggest that most metastatic drivers are established in the primary tumor, despite the substantial heterogeneity seen in the metastases
Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi
T.W.J.G., M.C.F., D.S.S., A.L., E.C., F.C.C., J.B., A.A.C., C.M., F.S., B.R.S., S.O., were supported through the Biodiversa project RACE: Risk Assessment of Chytridiomycosis to European Amphibian Biodiversity (NERC standard grant NE/K014455/1 and NE/E006701/1; ANR-08-BDVA-002-03). M.C.F., J.S., C.W., P.G. were supported by the Leverhulme Trust (RPG-2014-273), M.C.F., A.C., C.W. were supported by the Morris Animal Foundation. J.V. was supported by the Bolyai János Research Grant of the Hunagrian Academy of Sciences (BO/00597/14). F.G. and D.G. were supported by the Conservation Leadership Programme Future Conservationist Award. C.S.A. was supported by Fondecyt (No. 1181758). M.C.F. and A.C. were supported by. Mohamed bin Zayed Species Conservation Fund Project (152510704). GMR held a doctoral scholarship (SFRH/BD/69194/2010) from Fundação para a Ciência e a Tecnologia. L.F.T., C.L., L.P.R. K.R.Z., T.Y.J., T.S.J. were supported by São Paulo Research Foundation (FAPESP #2016/25358-3), the National Counsel of Technological and Scientific Development (CNPq #300896/2016–6) and a Catalyzing New International Collaborations grant from the United States NSF (OISE-1159513). C.S.A. was supported by Fondecyt (No. 1181758). T.M.D. was supported by the Royal Geographical Society and the Royal Zoological Society of Scotland. B.W. was supported by the National Research Foundation of Korea (2015R1D1A1A01057282).Peer reviewedPublisher PD
Recent Asian origin of chytrid fungi causing global amphibian declines
Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide
Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi
© The Author(s) 2018.Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.T.W.J.G., M.C.F., D.S.S., A.L., E.C., F.C.C., J.B., A.A.C., C.M., F.S., B.R.S., S.O., were supported through the Biodiversa project RACE: Risk Assessment of Chytridiomycosis to European Amphibian Biodiversity (NERC standard grant NE/K014455/1 and NE/E006701/1; ANR-08-BDVA-002-03). M.C.F., J.S., C.W., P.G. were supported by the Leverhulme Trust (RPG-2014-273), M.C.F., A.C., C.W. were supported by the Morris Animal Foundation. J.V. was supported by the Bolyai János Research Grant of the Hunagrian Academy of Sciences (BO/00597/14). F.G. and D.G. were supported by the Conservation Leadership Programme Future Conservationist Award. C.S.A. was supported by Fondecyt (No. 1181758). M.C.F. and A.C. were supported by. Mohamed bin Zayed Species Conservation Fund Project (152510704). GMR held a doctoral scholarship (SFRH/ BD/69194/2010) from Fundação para a Ciência e a Tecnologia. L.F.T., C.L., L.P.R. K.R.Z., T.Y.J., T.S.J. were supported by São Paulo Research Foundation (FAPESP #2016/25358-3), the National Counsel of Technological and Scientifc Development (CNPq #300896/2016–6) and a Catalyzing New International Collaborations grant from the United States NSF (OISE-1159513). C.S.A. was supported by Fondecyt (No. 1181758). T.M.D. was supported by the Royal Geographical Society and the Royal Zoological Society of Scotland. B.W. was supported by the National Research Foundation of Korea (2015R1D1A1A01057282).Peer Reviewe
In-Datacenter Performance Analysis of a Tensor Processing Unit
Many architects believe that major improvements in cost-energy-performance
must now come from domain-specific hardware. This paper evaluates a custom
ASIC---called a Tensor Processing Unit (TPU)---deployed in datacenters since
2015 that accelerates the inference phase of neural networks (NN). The heart of
the TPU is a 65,536 8-bit MAC matrix multiply unit that offers a peak
throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed
on-chip memory. The TPU's deterministic execution model is a better match to
the 99th-percentile response-time requirement of our NN applications than are
the time-varying optimizations of CPUs and GPUs (caches, out-of-order
execution, multithreading, multiprocessing, prefetching, ...) that help average
throughput more than guaranteed latency. The lack of such features helps
explain why, despite having myriad MACs and a big memory, the TPU is relatively
small and low power. We compare the TPU to a server-class Intel Haswell CPU and
an Nvidia K80 GPU, which are contemporaries deployed in the same datacenters.
Our workload, written in the high-level TensorFlow framework, uses production
NN applications (MLPs, CNNs, and LSTMs) that represent 95% of our datacenters'
NN inference demand. Despite low utilization for some applications, the TPU is
on average about 15X - 30X faster than its contemporary GPU or CPU, with
TOPS/Watt about 30X - 80X higher. Moreover, using the GPU's GDDR5 memory in the
TPU would triple achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and
200X the CPU.Comment: 17 pages, 11 figures, 8 tables. To appear at the 44th International
Symposium on Computer Architecture (ISCA), Toronto, Canada, June 24-28, 201
Delicious but Immoral? Ethical Information Influences Consumer Expectations and Experience of Food
It has been suggested that information about ethically relevant factors in production can affect both the expectation and experience of foods. However, evidence on these issues is inconsistent. We begin by discussing recent philosophical work on the interaction of ethical and aesthetic values in the domain of food, work which is inspired by a similar debate about art. Some philosophers have suggested that ethical factors in production that leave a ‘trace’ on a product, i.e., make a perceivable difference to it, will affect the aesthetic quality of the food. There has also been the suggestion that these sorts of ethical/aesthetic interactions may vary across different kinds of food. In two studies we examined the expected experience and the actual experience of eating various foods, when participants had been given ethically relevant information about those foods. We examined people’s ethical values and the effect that had on the ratings. We found strong evidence to suggest that ethically relevant information affects expected experience of food and that the valence of the information is a significant factor. We found an effect of ethical values on expectations of food. Most notably, we found evidence that suggests that ‘trace’ may be a relevant factor mediating the effect of ethically relevant information on expectations and experience of food. Future research should further explore the factor of trace, look at the effect of ethical information in a wider range of foods, and investigate these phenomena in distinct populations
- …