4,449 research outputs found
Exactly solvable quantum spin ladders associated with the orthogonal and symplectic Lie algebras
We extend the results of spin ladder models associated with the Lie algebras
to the case of the orthogonal and symplectic algebras $o(2^n),\
sp(2^n)$ where n is the number of legs for the system. Two classes of models
are found whose symmetry, either orthogonal or symplectic, has an explicit n
dependence. Integrability of these models is shown for an arbitrary coupling of
XX type rung interactions and applied magnetic field term.Comment: 7 pages, Late
Phase diagram of the su(8) quantum spin tube
We calculate the phase diagram of an integrable anisotropic 3-leg quantum
spin tube connected to the su(8) algebra. We find several quantum phase
transitions for antiferromagnetic rung couplings. Their locations are
calculated exactly from the Bethe Ansatz solution and we discuss the nature of
each of the different phases.Comment: 10 pages, RevTeX, 1 postscript figur
Exposing the Role of Gender in the Performance of Founding Entrepreneurs
Using a sample of 114 entrepreneurs, predictors of financial performance outcomes were tested related to founding status and gender. Significant differences were found for founding status indicating that entrepreneurs who founded their ventures were more likely to experience higher financial performance than non-founding entrepreneurs. Hypotheses relating to gender with founding status and financial performance were not supported. Further, gender was not supported as a moderator of the relationship between founding status and financial performance. Implications of these findings are discussed and avenues for future research on this topic are offered
Decimetric gyrosynchrotron emission during a solar flare
A decimetric, microwave, and hard X-ray burst was observed during a solar flare in which the radio spectrum below peak flux fits an f+2 power law over more than a decade in frequency. The spectrum is interpreted to mean that the radio emission originated in a homogeneous, thermal, gyrosynchrotron source. This is the first time that gyrosynchrotron radiation has been identified at such low decimetric frequencies (900-998) MHz). The radio emission was cotemporal with the largest single hard X-ray spike burst ever reported. The spectrum of the hard X-ray burst can be well represented by a thermal bremsstrahlung function over the energy range from 30 to 463 keV at the time of maximum flux. The temporal coincidence and thermal form of both the X-ray and radio spectra suggest a common source electron distribution. The unusual low-frequency extent of the single-temperature thermal radio spectrum and its association with the hard X-ray burst imply that the source had an area approx. 10(18) sq cm a temperature approx 5x10(8) K, an electron density approx. 7.10(9) cu cm and a magnetic field of approx. 120 G. H(alpha) and 400-800 MHz evidence suggest that a loop structure of length 10,000 km existed in the flare active region which could have been the common, thermal source of the observed impulsive emissions
European Paediatric Formulation Initiative (EuPFI)-Formulating Ideas for Better Medicines for Children.
© American Association of Pharmaceutical Scientists 2016, published by Springer US, available online at doi: https://doi.org/10.1208/s12249-016-0584-1The European Paediatric Formulation Initiative (EuPFI), founded in 2007, aims to promote and facilitate the preparation of better and safe medicines for children through linking research and information dissemination. It brings together the capabilities of the industry, academics, hospitals, and regulators within a common platform in order to scope the solid understanding of the major issues, which will underpin the progress towards the future of paediatric medicines we want.The EuPFI was formed in parallel to the adoption of regulations within the EU and USA and has served as a community that drives research and dissemination through publications and the organisation of annual conferences. The membership and reach of this group have grown since its inception in 2007 and continue to develop and evolve to meet the continuing needs and ambitions of research into and development of age appropriate medicines. Five diverse workstreams (age-appropriate medicines, Biopharmaceutics, Administration Devices, Excipients and Taste Assessment & Taste Masking (TATM)) direct specific workpackages on behalf of the EuPFI. Furthermore, EuPFI interacts with multiple diverse professional groups across the globe to ensure efficient working in the area of paediatric medicines. Strong commitment and active involvement of all EuPFI stakeholders have proved to be vital to effectively address knowledge gaps related to paediatric medicines, discuss potential areas for further research and identify issues that need more attention and analysis in the future.Peer reviewedFinal Accepted Versio
Shear dispersion along circular pipes is affected by bends, but the torsion of the pipe is negligible
The flow of a viscous fluid along a curving pipe of fixed radius is driven by
a pressure gradient. For a generally curving pipe it is the fluid flux which is
constant along the pipe and so I correct fluid flow solutions of Dean (1928)
and Topakoglu (1967) which assume constant pressure gradient. When the pipe is
straight, the fluid adopts the parabolic velocity profile of Poiseuille flow;
the spread of any contaminant along the pipe is then described by the shear
dispersion model of Taylor (1954) and its refinements by Mercer, Watt et al
(1994,1996). However, two conflicting effects occur in a generally curving
pipe: viscosity skews the velocity profile which enhances the shear dispersion;
whereas in faster flow centrifugal effects establish secondary flows that
reduce the shear dispersion. The two opposing effects cancel at a Reynolds
number of about 15. Interestingly, the torsion of the pipe seems to have very
little effect upon the flow or the dispersion, the curvature is by far the
dominant influence. Lastly, curvature and torsion in the fluid flow
significantly enhance the upstream tails of concentration profiles in
qualitative agreement with observations of dispersion in river flow
Magnetic Phase Transitions in One-dimensional Strongly Attractive Three-Component Ultracold Fermions
We investigate the nature of trions, pairing and quantum phase transitions in
one-dimensional strongly attractive three-component ultracold fermions in
external fields. Exact results for the groundstate energy, critical fields,
magnetization and phase diagrams are obtained analytically from the Bethe
ansatz solutions. Driven by Zeeman splitting, the system shows exotic phases of
trions, bound pairs, a normal Fermi liquid and four mixtures of these states.
Particularly, a smooth phase transition from a trionic phase into a pairing
phase occurs as the highest hyperfine level separates from the two lower energy
levels. In contrast, there is a smooth phase transition from the trionic phase
into a normal Fermi liquid as the lowest level separates from the two higher
levels.Comment: 4 pages, 3 figures, minor revisions to text, replacement figure, refs
added and update
Magnetic Susceptibility of an integrable anisotropic spin ladder system
We investigate the thermodynamics of a spin ladder model which possesses a
free parameter besides the rung and leg couplings. The model is exactly solved
by the Bethe Ansatz and exhibits a phase transition between a gapped and a
gapless spin excitation spectrum. The magnetic susceptibility is obtained
numerically and its dependence on the anisotropy parameter is determined. A
connection with the compounds KCuCl3, Cu2(C5H12N2)2Cl4 and (C5H12N)2CuBr4 in
the strong coupling regime is made and our results for the magnetic
susceptibility fit the experimental data remarkably well.Comment: 12 pages, 12 figures included, submitted to Phys. Rev.
Wilson ratio of Fermi gases in one dimension
We calculate the Wilson ratio of the one-dimensional Fermi gas with spin
imbalance. The Wilson ratio of attractively interacting fermions is solely
determined by the density stiffness and sound velocity of pairs and of excess
fermions for the two-component Tomonaga-Luttinger liquid (TLL) phase. The ratio
exhibits anomalous enhancement at the two critical points due to the sudden
change in the density of states. Despite a breakdown of the quasiparticle
description in one dimension, two important features of the Fermi liquid are
retained, namely the specific heat is linearly proportional to temperature
whereas the susceptibility is independent of temperature. In contrast to the
phenomenological TLL parameter, the Wilson ratio provides a powerful parameter
for testing universal quantum liquids of interacting fermions in one, two and
three dimensions.Comment: 5+2 pages, 4+1 figures, Eq. (4) is proved, figures were refine
Extreme Response Style: A Meta-Analysis
Extreme response style (ERS) refers to the tendency to prefer responding using extreme endpoints on rating scales. We use meta-analysis to summarize the correlates of ERS. Our findings present how one’s tendency to engage in extreme responding is related to demographic variables (e.g., age, gender, education, and race), intelligence, acquiescence, and number of points and items in a scale. We also identified a non-linear relationship between age and extreme responding. Thus, this article should be read by anyone using Likert type scales when using data from a diverse set of individuals
- …