44 research outputs found
One-step refolding and purification of disulfide-containing proteins with a C-terminal MESNA thioester
<p>Abstract</p> <p>Background</p> <p>Expression systems based on self-cleavable intein domains allow the generation of recombinant proteins with a C-terminal thioester. This uniquely reactive C-terminus can be used in native chemical ligation reactions to introduce synthetic groups or to immobilize proteins on surfaces and nanoparticles. Unfortunately, common refolding procedures for recombinant proteins that contain disulfide bonds do not preserve the thioester functionality and therefore novel refolding procedures need to be developed.</p> <p>Results</p> <p>A novel redox buffer consisting of MESNA and diMESNA showed a refolding efficiency comparable to that of GSH/GSSG and prevented loss of the protein's thioester functionality. Moreover, introduction of the MESNA/diMESNA redox couple in the cleavage buffer allowed simultaneous on-column refolding of Ribonuclease A and intein-mediated cleavage to yield Ribonuclease A with a C-terminal MESNA-thioester. The C-terminal thioester was shown to be active in native chemical ligation.</p> <p>Conclusion</p> <p>An efficient method was developed for the production of disulfide bond containing proteins with C-terminal thioesters. Introduction of a MESNA/diMESNA redox couple resulted in simultaneous on-column refolding, purification and thioester generation of the model protein Ribonuclease A.</p
Mesoscale Characterization of Supramolecular Transient Networks Using SAXS and Rheology
Hydrogels and, in particular, supramolecular hydrogels show promising properties for application in regenerative medicine because of their ability to adapt to the natural environment these materials are brought into. However, only few studies focus on the structure-property relationships in supramolecular hydrogels. Here, we study in detail both the structure and the mechanical properties of such a network, composed of poly(ethylene glycol), end-functionalized with ureido-pyrimidinone fourfold hydrogen bonding units. This network is responsive to triggers such as concentration, temperature and pH. To obtain more insight into the sol-gel transition of the system, both rheology and small-angle X-ray scattering (SAXS) are used. We show that the sol-gel transitions based on these three triggers, as measured by rheology, coincide with the appearance of a structural feature in SAXS. We attribute this feature to the presence of hydrophobic domains where cross-links are formed. These results provide more insight into the mechanism of network formation in these materials, which can be exploited for tailoring their behavior for biomedical applications, where one of the triggers discussed might be used
Уникальные ресурсы Крыма как основа для развития мистического туризма
Целью статьи является рассмотрение возможности развития мистического туризма в Крыму на основе его уникальных природных и культурно-исторических ресурсов
Large‐Range HS‐AFM Imaging of DNA Self‐Assembly through In Situ Data‐Driven Control
Understanding hierarchical self-assembly of biological structures requires real time measurement of the self-assembly process over a broad range of length- and timescales. The success of high-speed atomic force microscopy (HS-AFM) in imaging small scale molecular interactions has fueled attempts to introduce this method as a routine technique for studying biological and artificial self-assembly processes. Current state of the art HS-AFM scanners achieve their high imaging speed by trading achievable field of view for bandwidth. This limits their suitability when studying larger biological structures. In ambient conditions, large range scanners with lower resonance frequencies offer a solution when combined with first principle model-based schemes. For imaging molecular self-assembly process in fluid however, such traditional control techniques are less suited. In liquid, the time-varying changes in the behavior of the complex system necessitates frequent update of the compensating controller. Recent developments in data-driven control theory offer a model-free, automatable approach to compensate the complex system behavior and its changes. Here we present a data-driven control design method to extend the imaging speed of a conventional AFM tube scanner by one order of magnitude. This enabled the recording of the self-assembly process of DNA tripods into a hexagonal lattice at multiple length scales.LBNILAPBLThis is an open access article under the terms of the Creative Commons Attribution Licens
Sustained Delivery of Insulin-Like Growth Factor-1/Hepatocyte Growth Factor Stimulates Endogenous Cardiac Repair in the Chronic Infarcted Pig Heart
Activation of endogenous cardiac stem/progenitor cells (eCSCs) can improve cardiac repair after acute myocardial infarction. We studied whether the in situ activation of eCSCs by insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) could be increased using a newly developed hydrogel in chronic myocardial infarction (MI). One-month post-MI pigs underwent NOGA-guided intramyocardial injections of IGF-1/HGF (GF: both 0.5 μg/mL, n = 5) or IGF-1/HGF incorporated in UPy hydrogel (UPy-GF; both 0.5 μg/mL, n = 5). UPy hydrogel without added growth factors was administered to four control (CTRL) pigs. Left ventricular ejection fraction was increased in the UPy-GF and GF animals compared to CTRLs. UPy-GF delivery reduced pathological hypertrophy, led to the formation of new, small cardiomyocytes, and increased capillarization. The eCSC population was increased almost fourfold in the border zone of the UPy-GF-treated hearts compared to CTRL hearts. These results show that IGF-1/HGF therapy led to an improved cardiac function in chronic MI and that effect size could be further increased by using UPy hydrogel. Electronic supplementary material The online version of this article (doi:10.1007/s12265-013-9518-4) contains supplementary material, which is available to authorized users
Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard
DNA origami, in which a long scaffold strand is assembled with a many short staple strands into parallel arrays of double helices, has proven a powerful method for custom nanofabrication. However, currently the design and optimization of custom 3D DNA-origami shapes is a barrier to rapid application to new areas. Here we introduce a modular barrel architecture, and demonstrate hierarchical assembly of a 100 megadalton DNA-origami barrel of similar to 90nm diameter and similar to 250nm height, that provides a rhombic-lattice canvas of a thousand pixels each, with pitch of similar to 8nm, on its inner and outer surfaces. Complex patterns rendered on these surfaces were resolved using up to twelve rounds of Exchange-PAINT super-resolution microscopy. We envision these structures as versatile nanoscale pegboards for applications requiring complex 3D arrangements of matter, which will serve to promote rapid uptake of this technology in diverse fields beyond specialist groups working in DNA nanotechnology
Sustained Delivery of Insulin-Like Growth Factor-1/Hepatocyte Growth Factor Stimulates Endogenous Cardiac Repair in the Chronic Infarcted Pig Heart
Activation of endogenous cardiac stem/progenitor cells (eCSCs) can improve cardiac repair after acute myocardial infarction. We studied whether the in situ activation of eCSCs by insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) could be increased using a newly developed hydrogel in chronic myocardial infarction (MI). One-month post-MI pigs underwent NOGA-gu ided intramyocardial injec- tions of IGF-1/HGF (GF: both 0.5 μ g/mL, n =5) or IGF-1/HGF incorporated in UPy hydrogel (UPy-GF; both 0.5 μ g/mL, n =5). UPy hydrogel without added growth factors was administered to four control (CTRL) pigs. Left ve ntricular ejection fraction was increased in the UPy-GF and GF animals compared to CTRLs. UPy-GF delivery reduced pathological hypertrophy, led to the formation of new, small cardiomyocytes, and increased capillarization. The eCSC popula tion was increased almost four- fold in the border zone of the UPy-GF-treated hearts compared to CTRL hearts. These results show that IGF-1/HGF therapy led to an improved cardia c function in chronic MI and that effect size could be further increased by using UPy hydrogel
A Fast pH-Switchable and Self-Healing Supramolecular Hydrogel Carrier for Guided, Local Catheter Injection in the Infarcted Myocardium
Minimally invasive intervention strategies after myocardial infarction use state-of-the-art catheter systems that are able to combine mapping of the infarcted area with precise, local injection of drugs. To this end, catheter delivery of drugs that are not immediately pumped out of the heart is still challenging, and requires a carrier matrix that in the solution state can be injected through a long catheter, and instantaneously gelates at the site of injection. To address this unmet need, a pH-switchable supramolecular hydrogel is developed. The supramolecular hydrogel is switched into a liquid at pH > 8.5, with a viscosity low enough to enable passage through a 1-m long catheter while rapidly forming a hydrogel in contact with tissue. The hydrogel has self-healing properties taking care of adjustment to the injection site. Growth factors are delivered from the hydrogel thereby clearly showing a reduction of infarct scar in a pig myocardial infarction model
Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes
Numerous key biological processes rely on the concept of multivalency, where ligands achieve stable binding only upon engaging multiple receptors. These processes, like viral entry or immune synapse formation, occur on the diffusive cellular membrane. One crucial, yet underexplored aspect of multivalent binding is the mobility of coupled receptors. Here, we discuss the consequences of mobility in multivalent processes from four perspectives: (I) The facilitation of receptor recruitment by the multivalent ligand due to their diffusivity prior to binding. (II) The effects of receptor preassembly, which allows their local accumulation. (III) The consequences of changes in mobility upon the formation of receptor/ligand complex. (IV) The changes in the diffusivity of lipid environment surrounding engaged receptors. We demonstrate how understanding mobility is essential for fully unravelling the principles of multivalent membrane processes, leading to further development in studies on receptor interactions, and guide the design of new generations of multivalent ligands.PB
DNA origami nanostructures for controlled therapeutic drug delivery
DNA nanostructures are emerging as a versatile platform for controlled drug delivery as a result of recent progress in production yield and strategies to obtain prolonged stability in biological environments. The construction of nanostructures from this unique biomaterial provides unparalleled control over structural and functional parameters. Recent applications of DNA origami-based nanocarriers for therapeutic drug delivery in preclinical phases highlight them as promising alternatives to conventional nanomaterials, as they benefit from the inherent favorable properties of DNA including biocompatibility and precise spatial addressability. By incorporating targeting aptamers and responsive properties into the nanocarrier design, more selective DNA origami-based nanocarriers are successfully prepared. On the other hand, current systems remain poorly understood in terms of biodistribution, final fate, and controlled drug release. As such, advances are needed to translate this material platform in its full potential for therapeutic applications