1,306 research outputs found

    Showcasing HH production: Benchmarks for the (HL-)LHC

    Get PDF
    Current projections suggest that the LHC will have only limited sensitivity to di-Higgs production in the Standard Model (SM), possibly even after the completion of its high luminosity phase. Multi-Higgs final states play a fundamental role in many extensions of the SM as they are intrinsically sensitive to modifications of the Higgs sector. Therefore, any new observation in multi-Higgs final states could be linked to a range of beyond the SM (BSM) phenomena that are not sufficiently addressed by the SM. Extensions of the Higgs sector typically lead to new phenomenological signatures in multi-Higgs final states that are vastly different from the SM expectation. In this work, we provide a range of signature-driven benchmark points for resonant and non-resonant BSM di-Higgs production that motivate non-SM kinematic correlations and multi-fermion discovery channels. Relying on theoretically well-motivated assumptions, special attention is devoted to the particular case where the presence of new physics will dominantly manifest itself in multi-Higgs final states

    High scale impact in alignment and decoupling in two-Higgs doublet models

    Get PDF
    The two-Higgs doublet model (2HDM) provides an excellent benchmark to study physics beyond the Standard Model (SM). In this work we discuss how the behaviour of the model at high energy scales causes it to have a scalar with properties very similar to those of the SM -- which means the 2HDM can be seen to naturally favor a decoupling or alignment limit. For a type II 2HDM, we show that requiring the model to be theoretically valid up to a scale of 1 TeV, by studying the renormalization group equations (RGE) of the parameters of the model, causes a significant reduction in the allowed magnitude of the quartic couplings. This, combined with BB-physics bounds, forces the model to be naturally decoupled. As a consequence, any non-decoupling limits in type II, like the wrong-sign scenario, are excluded. On the contrary, even with the very constraining limits for the Higgs couplings from the LHC, the type I model can deviate substantially from alignment. An RGE analysis similar to that made for type II shows, however, that requiring a single scalar to be heavier than about 500 GeV would be sufficient for the model to be decoupled. Finally, we show that not only a 2HDM where the lightest of the CP-even scalars is the 125 GeV one does not require new physics to be stable up to the Planck scale but this is also true when the heavy CP-even Higgs is the 125 GeV and the theory has no decoupling limit for the type I model.Comment: 28 pages, 19 figure

    Theory of phase-locking in generalized hybrid Josephson junction arrays

    Full text link
    A recently proposed scheme for the analytical treatment of the dynamics of two-dimensional hybrid Josephson junction arrays is extended to a class of generalized hybrid arrays with ''horizontal'' shunts involving a capacitive as well as an inductive component. This class of arrays is of special interest, because the internal cell coupling has been shown numerically to favor in-phase synchronization for certain parameter values. As a result, we derive limits on the circuit design parameters for realizing this state. In addition, we obtain formulas for the flux-dependent frequency including flux-induced switching processes between the in-phase and anti-phase oscillation regime. The treatment covers unloaded arrays as well as arrays shunted via an external load.Comment: 24 pages, REVTeX, 5 Postscript figures, Subm. to Phys. Rev.

    Anti-phase locking in a two-dimensional Josephson junction array

    Full text link
    We consider theoretically phase locking in a simple two-dimensional Josephson junction array consisting of two loops coupled via a joint line transverse to the bias current. Ring inductances are supposed to be small, and special emphasis is taken on the influence of external flux. Is is shown, that in the stable oscillation regime both cells oscillate with a phase shift equal to π\pi (i.e. anti-phase). This result may explain the low radiation output obtained so far in two-dimensional Josephson junction arrays experimentally.Comment: 11 pages, REVTeX, 1 Postscript figure, Subm. to Appl. Phys. Let

    Assessing the significance of knockout cascades in metabolic networks

    Full text link
    Complex networks have been shown to be robust against random structural perturbations, but vulnerable against targeted attacks. Robustness analysis usually simulates the removal of individual or sets of nodes, followed by the assessment of the inflicted damage. For complex metabolic networks, it has been suggested that evolutionary pressure may favor robustness against reaction removal. However, the removal of a reaction and its impact on the network may as well be interpreted as selective regulation of pathway activities, suggesting a tradeoff between the efficiency of regulation and vulnerability. Here, we employ a cascading failure algorithm to simulate the removal of single and pairs of reactions from the metabolic networks of two organisms, and estimate the significance of the results using two different null models: degree preserving and mass-balanced randomization. Our analysis suggests that evolutionary pressure promotes larger cascades of non-viable reactions, and thus favors the ability of efficient metabolic regulation at the expense of robustness

    Intrinsic mechanism of phase locking in two-dimensional Josephson junction networks in presence of an external magnetic field

    Full text link
    We present numerical simulations of the dynamics of two-dimensional Josephson junction arrays to study the mechanism of mutual phase locking. We show that in the presence of an external magnetic field two mechanisms are playing a role in phase locking: feedback through the external load and internal coupling between rows due to microwave currents induced by the field. We have found the parameter values (junction capacitance, cell loop inductance, impedance of the external load) for which the interplay of both these mechanisms leads to the in-phase solution. The case of unshunted arrays is discussed as well.Comment: 13 pages, incl. 6 ps figures, Subm. to Europhysics Letter

    Transcription in the absence of histone H3.3

    Get PDF
    Di- and trimethylation of histone H3 lysine 4 (H3K4me2 and H3K4me3) are hallmarks of chromatin at active genes. The major fraction of K4-methylated histone H3 is the variant H3 (termed H3.3 in Drosophila), which replaces canonical H3 (H3.2) in transcribed genes. Here, we genetically address the in vivo significance of such K4 methylation by replacing wild-type H3.3 with a mutant form (H3.3K4A) that cannot be methylated. We monitored the transcription that occurs in response to multiple well-described signaling pathways. Surprisingly, the transcriptional outputs of these pathways remain intact in H3.3K4A mutant cells. Even the complete absence of both H3.3 genes does not noticeably affect viability or function of cells: double mutant animals are viable but sterile. Fertility can be rescued by K4-containing versions of H3.3, but not with mutant H3.3 (H3.3K4A) or with canonical H3.2. Together, these data suggest that in Drosophila, presence of H3.3K4me in the chromatin of active genes is dispensable for successful transcription in most cells and only plays an important role in reproductive tissues

    Sleep in the human aging process and circadian sleep rhythm disruptions

    Get PDF
    The aging process is often related to sleeping difficulties, often due to changes in circadian rhythms. The circadian timing system is centered in the suprachiasmatic nucleus - the master biological clock - which synchronizes the rhythm of oscillators throughout the body, including the sleep-wake cycle. This affects the time, duration and quality of sleep according to the development and aging process, under external and internal influences. This review addresses the human circadian timing system, including endogenous and exogenous influences on circadian rhythms, their age-related particularities, as well as the repercussions of circadian misalignment in neurodegenerative diseases. Circadian rhythms naturally weaken with aging, but there are particularities according to age. Throughout life, sleep and circadian rhythm disorders are strongly bidirectionally related to the pathophysiology of some psychiatric and neurodegenerative diseases, such as Alzheimer\u27s and Parkinson\u27s diseases. This knowledge could potentially create valuable opportunities to improve the health of the world\u27s population that is under circadian misalignment and aging
    corecore