622 research outputs found
Bloch oscillations in one-dimensional spinor gas
A force applied to a spin-flipped particle in a one-dimensional spinor gas
may lead to Bloch oscillations of particle's position and velocity. The
existence of Bloch oscillations crucially depends on the viscous friction force
exerted by the rest of the gas on the spin excitation. We evaluate the friction
in terms of the quantum fluid parameters. In particular, we show that the
friction is absent for integrable cases, such as SU(2) symmetric gas of bosons
or fermions. For small deviations from the exact integrability the friction is
very weak, opening the possibility to observe Bloch oscillations.Comment: 4 pages, 2 figure
Internal state conversion in ultracold gases
We consider an ultracold gas of (non-condensed) bosons or fermions with two
internal states, and study the effect of a gradient of the transition frequency
between these states. When a RF pulse is applied to the sample,
exchange effects during collisions transfer the atoms into internal states
which depend on the direction of their velocity. This results, after a short
time, in a spatial separation between the two states. A kinetic equation is
solved analytically and numerically; the results agree well with the recent
observations of Lewandowski et al.Comment: Accepted version, to appear in PR
Normal-superfluid interaction dynamics in a spinor Bose gas
Coherent behavior of spinor Bose-Einstein condensates is studied in the
presence of a significant uncondensed (normal) component. Normal-superfluid
exchange scattering leads to a near-perfect local alignment between the spin
fields of the two components. Through this spin locking, spin-domain formation
in the condensate is vastly accelerated as the spin populations in the
condensate are entrained by large-amplitude spin waves in the normal component.
We present data evincing the normal-superfluid spin dynamics in this regime of
complicated interdependent behavior.Comment: 5 pages, 4 fig
Electric field induced strong localization of electrons on solid hydrogen surface: possible applications to quantum computing
Two-dimensional electron system on the liquid helium surface is one of the
leading candidates for constructing large analog quantum computers (P.M.
Platzman and M.I. Dykman, Science 284, 1967 (1999)). Similar electron systems
on the surfaces of solid hydrogen or solid neon may have some important
advantages with respect to electrons on liquid helium in quantum computing
applications, such as larger state separation , absence of
propagating capillary waves (or ripplons), smaller vapor pressure, etc. As a
result, it may operate at higher temperatures. Surface roughness is the main
hurdle to overcome in building a realistic quantum computer using these states.
Electric field induced strong localization of surface electrons is shown to be
a convenient tool to characterize surface roughness.Comment: 4 pages, 3 figure
A Detailed Far-Ultraviolet Spectral Atlas of O-Type Stars
In this paper we present a spectral atlas covering the wavelength interval
930--1188A for O2--O9.5 stars using Far Ultraviolet Spectroscopic Explorer
archival data. The stars selected for the atlas were drawn from three
populations: Galactic main sequence (class III-V) stars, supergiants, and main
sequence stars in the Magellanic Clouds, which have low metallicities. For each
of these stars we have prepared FITS files comprised of paris of merged spectra
for user access via the Multi-Mission Archives at Space Telescope. We chose
spectra from the first population with spectral types O4, O5, O6, O7, O8, and
O9.5 and used them to compile tables and figures with identifications of all
possible atmospheric and ISM lines in the region 949-1188A. Our identified line
totals for these six representative spectra are 821 (500), 992 (663), 1077
(749), 1178 (847), 1359 (1001), and 1798 (1392) lines, respectively, where the
numbers in parentheses are the totals of lines formed in the atmospheres,
according to spectral synthesis models. The total number of unique atmospheric
identifications for the six main sequence O star template spectra is 1792,
whereas the number of atmospheric lines in common to these spectra is 300. The
number of identified lines decreases toward earlier types (increasing effective
temperature), the whlle percentages of "missed" features (lines not predicted
from our spectral syntheses) drops from a high of 8% at type B0.2, from our
recently published B star far-UV atlas, to 1--3% for type O spectra. The
percentages of overpredicted lines are similar, despite their being much higher
for B star spectra. We also discuss the statistics of line populations among
the various elemental ionization states. Finally, as an aid to users we list
those isolated lines that can be used to determine stellar temperatures and the
presence of possible chemical anomalies.Comment: To appear in Astrophysical Journal Supplements: 18 pages, 6 tables, 4
figures. Tables 3, 4, and 6 in full may be accessed from the MAST archvies at
(http://archive.stsci.edu/prepds/fuvostars
Castaing Instability and Precessing Domains in Confined Alkali Gases
We explore analogy between two-component quantum alkali gases and
spin-polarized helium systems. Recent experiments in trapped gases are put into
the frame of the existing theory for Castaing instability in transverse channel
and formation of homogeneous precessing domains in spin-polarized systems.
Analogous effects have already been observed in spin-polarized and
mixtures systems. The threshold effect of the confining
potential on the instability is analyzed. New experimental possibilities for
observation of transverse instability in a trap are discussed.Comment: 6 RevTex pages, no figure
Transverse spin dynamics in a spin-polarized Fermi liquid
The linear equations for transverse spin dynamics in weakly polarised
degenerate Fermi liquid with arbitrary relationship between temperature and
polarization are derived from Landau-Silin phenomenological kinetic equation
with general form of two-particle collision integral. The temperature and
polarization dependence of the spin current relaxation time is established. It
is found in particular that at finite polarization transverse spin wave damping
has a finite value at T=0. The analogy between temperature dependences of spin
waves attenuation and ultrasound absorption in degenerate Fermi liquid at
arbitrary temperature is presented. We also discuss spin-polarized Fermi liquid
in the general context of the Fermi-liquid theory and compare it with "Fermi
liquid" with spontaneous magnetization.Comment: 10 page
Optical excitations in a non-ideal Bose gas
Optical excitations in a Bose gas are demonstrated to be very sensitive to
many-body effects. At low temperature the momentum relaxation is provided by
momentum exchange collisions, rather than by elastic collisions. A collective
excitation mode forms, which in a Boltzmann gas is manifest in a collision
shift and dramatic narrowing of spectral lines.
In the BEC state, each spectral line splits into two components. The doubling
of the optical excitations results from the physics analogous to that of the
second sound. We present a theory of the line doubling, and calculate the
oscillator strengths and linewidth.Comment: 5 pages, 3 eps figure
Exact soliton solutions of coupled nonlinear Schr\"odinger equations: Shape changing collisions, logic gates and partially coherent solitons
The novel dynamical features underlying soliton interactions in coupled
nonlinear Schr{\"o}dinger equations, which model multimode wave propagation
under varied physical situations in nonlinear optics, are studied. In this
paper, by explicitly constructing multisoliton solutions (upto four-soliton
solutions) for two coupled and arbitrary -coupled nonlinear Schr{\"o}dinger
equations using the Hirota bilinearization method, we bring out clearly the
various features underlying the fascinating shape changing (intensity
redistribution) collisions of solitons, including changes in amplitudes, phases
and relative separation distances, and the very many possibilities of energy
redistributions among the modes of solitons. However in this multisoliton
collision process the pair-wise collision nature is shown to be preserved in
spite of the changes in the amplitudes and phases of the solitons. Detailed
asymptotic analysis also shows that when solitons undergo multiple collisions,
there exists the exciting possibility of shape restoration of atleast one
soliton during interactions of more than two solitons represented by three and
higher order soliton solutions. From application point of view, we have shown
from the asymptotic expressions how the amplitude (intensity) redistribution
can be written as a generalized linear fractional transformation for the
-component case. Also we indicate how the multisolitons can be reinterpreted
as various logic gates for suitable choices of the soliton parameters, leading
to possible multistate logic. In addition, we point out that the various
recently studied partially coherent solitons are just special cases of the
bright soliton solutions exhibiting shape changing collisions, thereby
explaining their variable profile and shape variation in collision process.Comment: 50 Pages, 13 .jpg figures. To appear in PR
Collective dynamics of internal states in a Bose gas
Theory for the Rabi and internal Josephson effects in an interacting Bose gas
in the cold collision regime is presented. By using microscopic transport
equation for the density matrix the problem is mapped onto a problem of
precession of two coupled classical spins. In the absence of an external
excitation field our results agree with the theory for the density induced
frequency shifts in atomic clocks. In the presence of the external field, the
internal Josephson effect takes place in a condensed Bose gas as well as in a
non-condensed gas. The crossover from Rabi oscillations to the Josephson
oscillations as a function of interaction strength is studied in detail.Comment: 18 pages, 2 figure
- …
