15 research outputs found

    Inhibition of IFN-γ-dependent antiviral airway epithelial defense by cigarette smoke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although individuals exposed to cigarette smoke are more susceptible to respiratory infection, the effects of cigarette smoke on lung defense are incompletely understood. Because airway epithelial cell responses to type II interferon (IFN) are critical in regulation of defense against many respiratory viral infections, we hypothesized that cigarette smoke has inhibitory effects on IFN-γ-dependent antiviral mechanisms in epithelial cells in the airway.</p> <p>Methods</p> <p>Primary human tracheobronchial epithelial cells were first treated with cigarette smoke extract (CSE) followed by exposure to both CSE and IFN-γ. Epithelial cell cytotoxicity and IFN-γ-induced signaling, gene expression, and antiviral effects against respiratory syncytial virus (RSV) were tested without and with CSE exposure.</p> <p>Results</p> <p>CSE inhibited IFN-γ-dependent gene expression in airway epithelial cells, and these effects were not due to cell loss or cytotoxicity. CSE markedly inhibited IFN-γ-induced Stat1 phosphorylation, indicating that CSE altered type II interferon signal transduction and providing a mechanism for CSE effects. A period of CSE exposure combined with an interval of epithelial cell exposure to both CSE and IFN-γ was required to inhibit IFN-γ-induced cell signaling. CSE also decreased the inhibitory effect of IFN-γ on RSV mRNA and protein expression, confirming effects on viral infection. CSE effects on IFN-γ-induced Stat1 activation, antiviral protein expression, and inhibition of RSV infection were decreased by glutathione augmentation of epithelial cells using N-acetylcysteine or glutathione monoethyl ester, providing one strategy to alter cigarette smoke effects.</p> <p>Conclusions</p> <p>The results indicate that CSE inhibits the antiviral effects of IFN-γ, thereby presenting one explanation for increased susceptibility to respiratory viral infection in individuals exposed to cigarette smoke.</p

    Effects of intra-articular SHINBARO treatment on monosodium iodoacetate-induced osteoarthritis in rats

    Get PDF
    BACKGROUND: SHINBARO is a refined herbal formulation used to treat inflamed lesions and bone diseases. This study aimed to investigate the anti-osteoarthritic activities of intra-articular administration of SHINBARO and determine its underlying molecular mechanism in a monosodium iodoacetate (MIA)-induced osteoarthritis rat model. METHODS: Male Sprague–Dawley rats received a single intra-articular injection of MIA into the infrapatellar ligament of the right knee. Subsequently, the rats were treated with normal saline, SHINBARO, and diclofenac once daily for 21 days. Rats treated with normal saline, but not MIA, comprised the control group. Histological changes in the femur of the MIA-induced osteoarthritis rat model were observed by micro-computed tomography scanning and staining with hematoxylin and eosin, and safranin-O fast green. Serum levels of PGE(2) and anti-type II collagen antibodies in the MIA-induced osteoarthritis rat model were measured using commercial kits. Protein levels of inflammatory enzymes (iNOS, COX-2), pro-inflammatory cytokines (TNF-α, IL-1β), and inflammatory mediators (NF-κB, IκB) in cartilaginous tissues were determined by western blot analysis. RESULTS: Intra-articular administration of SHINBARO (IAS) at 20 mg/kg remarkably restrained the decrease in bone volume/total volume, being 28 % (P = 0.0001) higher than that in the vehicle-treated MIA group. IAS (2, 10, and 20 mg/kg) treatment significantly recovered the mean number of objects values with increased percentage changes of 13.5 % (P = 0.147), 27.5 % (P = 0.028), and 44.5 % (P = 0.031), respectively, compared with the vehicle-treated MIA group. The serum level of PGE(2) in the IAS group at 20 mg/kg was markedly inhibited by 60.6 % (P = 0.0007) compared with the vehicle-treated MIA group, and the anti-collagen type II antibody level in the IAS group was reduced in a dose-dependent manner. IAS (20 mg/kg) effectively suppressed the induction of inflammation-mediated enzymes (iNOS and COX-2) and pro-inflammatory cytokines (TNF-α and IL-1β). IAS treatment also downregulated the NF-κB level and increased the IκB-α level in the MIA- induced osteoarthritis rat model. CONCLUSION: SHINBARO inhibited PGE(2) and anti-type II collagen antibody production and modulated the balance of inflammatory enzymes, mediators, and cytokines in the MIA-induced osteoarthritis rat model. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13020-016-0089-6) contains supplementary material, which is available to authorized users

    Use of metabolomics for the chemotaxonomy of legume-associated Ascochyta and allied genera

    No full text
    Chemotaxonomy and the comparative analysis of metabolic features of fungi have the potential to provide valuable information relating to ecology and evolution, but have not been fully explored in fungal biology. Here, we investigated the chemical diversity of legume-associated Ascochyta and Phoma species and the possible use of a metabolomics approach using liquid chromatography-mass spectrometry for their classification. The metabolic features of 45 strains including 11 known species isolated from various legumes were extracted, and the datasets were analyzed using chemometrics methods such as principal component and hierarchical clustering analyses. We found a high degree of intra-species consistency in metabolic profiles, but inter-species diversity was high. Molecular phylogenies of the legume-associated Ascochyta/Phoma species were estimated using sequence data from three protein-coding genes and the five major chemical groups that were detected in the hierarchical clustering analysis were mapped to the phylogeny. Clusters based on similarity of metabolic features were largely congruent with the species phylogeny. These results indicated that evolutionarily distinct fungal lineages have diversified their metabolic capacities as they have evolved independently. This whole metabolomics approach may be an effective tool for chemotaxonomy of fungal taxa lacking information on their metabolic content

    Circulating IL-8 levels are increased in patients with type 2 diabetes and associated with worse inflammatory and cardiometabolic profile

    No full text
    AIMS: Interleukin-8 (IL-8) is a chemokine involved in systemic immunity, macrophages infiltration and activation in adipose tissue and may play a significant role in the pathogenesis of type 2 diabetes (T2D) and atherosclerosis. Aims of this study were to evaluate circulating IL-8 levels in adult patients with T2D in comparison with non-diabetic subjects and to describe clinical and biochemical correlates of IL-8 concentration. METHODS: For this cross-sectional study, we enrolled 79 consecutive T2D individuals referring to our diabetes outpatient clinics at Sapienza University of Rome, and 37 sex, age and BMI comparable non-diabetic subjects as a control group. Clinical parameters and medical history were recorded; fasting blood sampling was performed for biochemistry and for measuring serum IL-8, IL-6, TNF-α, CRP, adiponectin and 25(OH)vitamin D [25(OH)D] levels. RESULTS: Patients with T2D exhibited significantly higher serum IL-8 levels than non-diabetic subjects (69.27 ± 112.83 vs. 16.03 ± 24.27 pg/mL, p &lt; 0.001). In diabetic patients, increased IL-8 concentration correlated with higher IL-6 (p &lt; 0.001), TNF-α (p = 0.02), FBG (p = 0.035), HbA1c (p = 0.04) and LDL-C (p = 0.04) and with lower adiponectin (p = 0.02) and 25(OH)D (p = 0.003) concentrations. CONCLUSIONS: Patients with T2D display a marked elevation of circulating IL-8 levels which identify subjects with worse inflammatory, glycometabolic and lipid profile and lower vitamin D levels. Further studies are warranted for evaluating a possible role of IL-8 as a novel marker for risk stratification in T2D patients

    Colony-stimulating factor (CSF) 1 receptor blockade reduces inflammation in human and murine models of rheumatoid arthritis

    No full text
    CSF-1 or IL-34 stimulation of CSF1R promotes macrophage differentiation, activation and osteoclastogenesis, and pharmacological inhibition of CSF1R is beneficial in animal models of arthritis. The objective of this study was to determine the relative contributions of CSF-1 and IL-34 signaling to CSF1R in RA. CSF-1 and IL-34 were detected by immunohistochemical and digital image analysis in synovial tissue from 15 biological-naïve rheumatoid arthritis (RA) , 15 psoriatic arthritis (PsA) and 7 osteoarthritis (OA) patients . Gene expression in CSF-1- and IL-34-differentiated human macrophages was assessed by FACS analysis and quantitative PCR. RA synovial explants were incubated with CSF-1, IL-34, control antibody (Ab), or neutralizing/blocking Abs targeting CSF-1, IL-34, or CSF1R. The effect of a CSF1R-blocking Ab was examined in murine collagen-induced arthritis (CIA). CSF-1 (also known as M-CSF) and IL-34 expression was similar in RA and PsA synovial tissue, but lower in controls (P  < 0.05). CSF-1 expression was observed in the synovial sublining, and IL-34 in the sublining and the intimal lining layer. CSF-1 and IL-34 differentially regulated the expression of 17 of 336 inflammation-associated genes in macrophages, including chemokines, extra-cellular matrix components, and matrix metalloproteinases. Exogenous CSF-1 or IL-34, or their independent neutralization, had no effect on RA synovial explant IL-6 production. Anti-CSF1R Ab significantly reduced IL-6 and other inflammatory mediator production in RA synovial explants, and paw swelling and joint destruction in CIA. Simultaneous inhibition of CSF1R interactions with both CSF-1 and IL-34 suppresses inflammatory activation of RA synovial tissue and pathology in CIA, suggesting a novel therapeutic strategy for R
    corecore