265 research outputs found
Mass Quantization of the Schwarzschild Black Hole
We examine the Wheeler-DeWitt equaton for a static, eternal Schwarzschild
black hole in Kucha\v r-Brown variables and obtain its energy eigenstates.
Consistent solutions vanish in the exterior of the Kruskal manifold and are
non-vanishing only in the interior. The system is reminiscent of a particle in
a box. States of definite parity avoid the singular geometry by vanishing at
the origin. These definite parity states admit a discrete energy spectrum,
depending on one quantum number which determines the Arnowitt-Deser-Misner
(ADM) mass of the black hole according to a relation conjectured long ago by
Bekenstein, . If attention is restricted only to these
quantized energy states, a black hole is described not only by its mass but
also by its parity. States of indefinite parity do not admit a quantized mass
spectrum.Comment: Change in eq. (13). Factors of 4 cleaned up. Refs. adde
Toward a Quantization of Null Dust Collapse
Spherically symmetric, null dust clouds, like their time-like counterparts,
may collapse classically into black holes or naked singularities depending on
their initial conditions. We consider the Hamiltonian dynamics of the collapse
of an arbitrary distribution of null dust, expressed in terms of the physical
radius, , the null coordinates, for a collapsing cloud or for an
expanding cloud, the mass function, , of the null matter, and their
conjugate momenta. This description is obtained from the ADM description by a
Kucha\v{r}-type canonical transformation. The constraints are linear in the
canonical momenta and Dirac's constraint quantization program is implemented.
Explicit solutions the constraints are obtained for both expanding and
contracting null dust clouds with arbitrary mass functions.Comment: 10 pages, 2 figures (eps), RevTeX4. The last two sections have been
revised and corrected. To appear in Phys. Rev.
Mid-infrared photodetectors operating over an extended wavelength range up to 90 K
We report a wavelength threshold extension, from the designed value of 3.1 to 8.9 μm, in a -type heterostructure photodetector. This is associated with the use of a graded barrier and barrier offset, and arises from hole–hole interactions in the detector absorber. Experiments show that using long-pass filters to tune the energies of incident photons gives rise to changes in the intensity of the response. This demonstrates an alternative approach to achieving tuning of the photodetector response without the need to adjust the characteristic energy that is determined by the band structure
Gravitational collapse with tachyon field and barotropic fluid
A particular class of space-time, with a tachyon field, \phi, and a
barotropic fluid constituting the matter content, is considered herein as a
model for gravitational collapse. For simplicity, the tachyon potential is
assumed to be of inverse square form i.e., V(\phi) \sim \phi^{-2}. Our purpose,
by making use of the specific kinematical features of the tachyon, which are
rather different from a standard scalar field, is to establish the several
types of asymptotic behavior that our matter content induces. Employing a
dynamical system analysis, complemented by a thorough numerical study, we find
classical solutions corresponding to a naked singularity or a black hole
formation. In particular, there is a subset where the fluid and tachyon
participate in an interesting tracking behaviour, depending sensitively on the
initial conditions for the energy densities of the tachyon field and barotropic
fluid. Two other classes of solutions are present, corresponding respectively,
to either a tachyon or a barotropic fluid regime. Which of these emerges as
dominant, will depend on the choice of the barotropic parameter, \gamma.
Furthermore, these collapsing scenarios both have as final state the formation
of a black hole.Comment: 18 pages, 7 figures. v3: minor changes. Final version to appear in
GR
Naked Singularity Formation In f(R) Gravity
We study the gravitational collapse of a star with barotropic equation of
state in the context of theories of gravity.
Utilizing the metric formalism, we rewrite the field equations as those of
Brans-Dicke theory with vanishing coupling parameter. By choosing the
functionality of Ricci scalar as , we
show that for an appropriate initial value of the energy density, if
and satisfy certain conditions, the resulting singularity would be naked,
violating the cosmic censorship conjecture. These conditions are the ratio of
the mass function to the area radius of the collapsing ball, negativity of the
effective pressure, and the time behavior of the Kretschmann scalar. Also, as
long as parameter obeys certain conditions, the satisfaction of the
weak energy condition is guaranteed by the collapsing configuration.Comment: 15 pages, 4 figures, to appear in GR
High-Performance Computing for SKA Transient Search: Use of FPGA based Accelerators -- a brief review
This paper presents the High-Performance computing efforts with FPGA for the
accelerated pulsar/transient search for the SKA. Case studies are presented
from within SKA and pathfinder telescopes highlighting future opportunities. It
reviews the scenario that has shifted from offline processing of the radio
telescope data to digitizing several hundreds/thousands of antenna outputs over
huge bandwidths, forming several 100s of beams, and processing the data in the
SKA real-time pulsar search pipelines. A brief account of the different
architectures of the accelerators, primarily the new generation Field
Programmable Gate Array-based accelerators, showing their critical roles to
achieve high-performance computing and in handling the enormous data volume
problems of the SKA is presented here. It also presents the power-performance
efficiency of this emerging technology and presents potential future scenarios.Comment: Accepted for JoAA, SKA Special issue on SKA (2022
Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method
Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV–visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30–40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90–3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles
Palmitoleate Induces Hepatic Steatosis but Suppresses Liver Inflammatory Response in Mice
The interaction between fat deposition and inflammation during obesity contributes to the development of non-alcoholic fatty liver disease (NAFLD). The present study examined the effects of palmitoleate, a monounsaturated fatty acid (16∶1n7), on liver metabolic and inflammatory responses, and investigated the mechanisms by which palmitoleate increases hepatocyte fatty acid synthase (FAS) expression. Male wild-type C57BL/6J mice were supplemented with palmitoleate and subjected to the assays to analyze hepatic steatosis and liver inflammatory response. Additionally, mouse primary hepatocytes were treated with palmitoleate and used to analyze fat deposition, the inflammatory response, and sterol regulatory element-binding protein 1c (SREBP1c) activation. Compared with controls, palmitoleate supplementation increased the circulating levels of palmitoleate and improved systemic insulin sensitivity. Locally, hepatic fat deposition and SREBP1c and FAS expression were significantly increased in palmitoleate-supplemented mice. These pro-lipogenic events were accompanied by improvement of liver insulin signaling. In addition, palmitoleate supplementation reduced the numbers of macrophages/Kupffer cells in livers of the treated mice. Consistently, supplementation of palmitoleate decreased the phosphorylation of nuclear factor kappa B (NF-κB, p65) and the expression of proinflammatory cytokines. These results were recapitulated in primary mouse hepatocytes. In terms of regulating FAS expression, treatment of palmitoleate increased the transcription activity of SREBP1c and enhanced the binding of SREBP1c to FAS promoter. Palmitoleate also decreased the phosphorylation of NF-κB p65 and the expression of proinflammatory cytokines in cultured macrophages. Together, these results suggest that palmitoleate acts through dissociating liver inflammatory response from hepatic steatosis to play a unique role in NAFLD
A secretome profile indicative of oleate-induced proliferation of HepG2 hepatocellular carcinoma cells
Increased fatty acid (FA) is often observed in highly proliferative tumors. FAs have been shown to modulate the secretion of proteins from tumor cells, contributing to tumor survival. However, the secreted factors affected by FA have not been systematically explored. Here, we found that treatment of oleate, a monounsaturated omega-9 FA, promoted the proliferation of HepG2 cells. To examine the secreted factors associated with oleate-induced cell proliferation, we performed a comprehensive secretome profiling of oleate-treated and untreated HepG2 cells. A comparison of the secretomes identified 349 differentially secreted proteins (DSPs; 145 upregulated and 192 downregulated) in oleate-treated samples, compared to untreated samples. The functional enrichment and network analyses of the DSPs revealed that the 145 upregulated secreted proteins by oleate treatment were mainly associated with cell proliferation-related processes, such as lipid metabolism, inflammatory response, and ER stress. Based on the network models of the DSPs, we selected six DSPs (MIF, THBS1, PDIA3, APOA1, FASN, and EEF2) that can represent such processes related to cell proliferation. Thus, our results provided a secretome profile indicative of an oleate-induced proliferation of HepG2 cell
Nrf2 Expression Is Regulated by Epigenetic Mechanisms in Prostate Cancer of TRAMP Mice
Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is a transcription factor which regulates the expression of many cytoprotective genes. In the present study, we found that the expression of Nrf2 was suppressed in prostate tumor of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice. Similarly, the expression of Nrf2 and the induction of NQO1 were also substantially suppressed in tumorigenic TRAMP C1 cells but not in non-tumorigenic TRAMP C3 cells. Examination of the promoter region of the mouse Nrf2 gene identified a CpG island, which was methylated at specific CpG sites in prostate TRAMP tumor and in TRAMP C1 cells but not in normal prostate or TRAMP C3 cells, as shown by bisulfite genomic sequencing. Reporter assays indicated that methylation of these CpG sites dramatically inhibited the transcriptional activity of the Nrf2 promoter. Chromatin immunopreceipitation (ChIP) assays revealed increased binding of the methyl-CpG-binding protein 2 (MBD2) and trimethyl-histone H3 (Lys9) proteins to these CpG sites in the TRAMP C1 cells as compared to TRAMP C3 cells. In contrast, the binding of RNA Pol II and acetylated histone H3 to the Nrf2 promoter was decreased. Furthermore, treatment of TRAMP C1 cells with DNA methyltransferase (DNMT) inhibitor 5-aza-2′-deoxycytidine (5-aza) and histone deacetylase (HDAC) inhibitor trichostatin A (TSA) restored the expression of Nrf2 as well as the induction of NQO1 in TRAMP C1 cells. Taken together, these results indicate that the expression of Nrf2 is suppressed epigenetically by promoter methylation associated with MBD2 and histone modifications in the prostate tumor of TRAMP mice. Our present findings reveal a novel mechanism by which Nrf2 expression is suppressed in TRAMP prostate tumor, shed new light on the role of Nrf2 in carcinogenesis and provide potential new directions for the detection and prevention of prostate cancer
- …