20 research outputs found
Pregnancy outcomes in women with repeated implantation failures after intracytoplasmic morphologically selected sperm injection (IMSI)
<p>Abstract</p> <p>Background</p> <p>The purpose of this study was to compare laboratory and clinical outcomes of intracytoplasmic morphologically selected sperm injection (IMSI) and conventional intracytoplasmic sperm injection (ICSI) in couples with repeated implantation failures.</p> <p>Methods</p> <p>A total of 200 couples with at least two prior unsuccessful ICSI cycles were enrolled: 100 couples were submitted to IMSI and 100 were submitted to routine ICSI. For IMSI, spermatozoa were selected at 8400× magnification using an inverted microscope equipped with Nomarski (differential interference contrast) optics. For conventional ICSI, spermatozoa were selected at 400× magnification. Clinical outcomes were evaluated between the two groups.</p> <p>Results</p> <p>Study patients were comparable in age, number of treatment failures, aetiology of infertility, percentage of normal form assessed by MSOME (motile sperm organelle morphology examination), semen parameters, total number of oocytes collected, number of mature oocytes collected, total number of embryos transferred and number of high-quality embryos transferred. No statistically significant differences between the two groups were observed with regard to rates of fertilisation, implantation and pregnancy/cycle. Although not statistically significant, rates of miscarriage (IMSI:15.3% vs ICSI:31.7%), ongoing pregnancy (IMSI:22% vs ICSI:13%) and live births (IMSI:21% vs ICSI:12%) showed a trend towards better outcomes in the IMSI group. In addition, analysis of subpopulations with or without male factor showed similar results.</p> <p>Conclusions</p> <p>Our results suggest that IMSI does not provide a significant improvement in clinical outcome compared to ICSI, at least in couples with repeated implantation failures after conventional ICSI. However, it should be noted that there were clear trends for lower miscarriage rates (≈50% reduced) and higher rates of ongoing pregnancy and live births (both nearly doubled) within the IMSI group. Further confirmation as well as randomized large-scale trials are needed to confirm the beneficial effects of IMSI in couples with poor reproductive prognoses.</p
IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis
<p>Abstract</p> <p>Background</p> <p>Improved pregnancy, implantation, and birth rates have been reported after the use of reduced O2 concentration during embryo culture, mainly due to a reduction of the cumulative detrimental effects of reactive oxygen species. However, some studies have failed to report any positive effects. The objective of this meta-analysis was to evaluate the effect of a low-O2 environment on IVF/intracytoplasmic sperm injection (ICSI) outcomes.</p> <p>Methods</p> <p>All available published and ongoing randomised trials that compared the effects of low (~5%; OC~5) and atmospheric (~20%; OC~20) oxygen concentrations on IVF/ICSI outcomes were included. Search strategies included online surveys of databases from 1980 to 2011. The outcomes measured were fertilisation rate, implantation rate and ongoing pregnancy rates. The fixed effects model was used to calculate the odds ratio.</p> <p>Results</p> <p>Seven studies were included in this analysis. The pooled fertilisation rate did not differ significantly (<it>P </it>= 0.54) between the group of oocytes cultured at low O2 tension and the group at atmospheric O2 tension. Concerning all cycles, the implantation (<it>P </it>= 0.06) and ongoing pregnancy (<it>P </it>= 0.051) rates were not significantly different between the group receiving transferred sets containing only OC~5 embryos and the group receiving transferred sets with only OC~20 embryos. In a meta-analysis performed for only those trials in which embryos were transferred on day 2/3, implantation (<it>P </it>= 0.63) and ongoing pregnancy (<it>P </it>= 0.19) rates were not significantly different between the groups. In contrast, when a meta-analysis was performed using only trials in which embryos were transferred on days 5 and 6 (at the blastocyst stage), the group with transferred sets of only OC~5 embryos showed a statistically significantly higher implantation rate (<it>P </it>= 0.006) than the group receiving transferred sets with only OC~20 embryos, although the ongoing pregnancy (<it>P </it>= 0.19) rates were not significantly different between the groups.</p> <p>Conclusions</p> <p>Despite some promising results, it seems too early to conclude that low O2 culture has an effect on IVF outcome. Additional randomised controlled trials are necessary before evidence-based recommendations can be provided. It should be emphasised that the present meta-analysis does not provide any evidence that low oxygen concentration is unnecessary.</p
Evaluation of zona pellucida birefringence intensity during in vitro maturation of oocytes from stimulated cycles
Background: This study evaluated whether there is a relationship between the zona pellucida birefringence (ZP-BF) intensity and the nuclear (NM) and cytoplasmic (CM) in vitro maturation of human oocytes from stimulated cycles.Results: The ZP-BF was evaluated under an inverted microscope with a polarizing optical system and was scored as high/positive (when the ZP image presented a uniform and intense birefringence) or low/negative (when the image presented moderate and heterogeneous birefringence). CM was analyzed by evaluating the distribution of cortical granules (CGs) throughout the ooplasm by immunofluorescence staining. CM was classified as: complete, when CG was localized in the periphery; incomplete, when oocytes presented a cluster of CGs in the center; or in transition, when oocytes had both in clusters throughout cytoplasm and distributed in a layer in the cytoplasm periphery Nuclear maturation: From a total of 83 germinal vesicle (GV) stage oocytes, 58 of oocytes (69.9%) reached NM at the metaphase II stage. From these 58 oocytes matured in vitro, the high/positively scoring ZP-BF was presented in 82.7% of oocytes at the GV stage, in 75.8% of oocytes when at the metaphase I, and in 82.7% when oocytes reached MII. No relationship was observed between NM and ZP-BF positive/negative scores (P = 0.55). These variables had a low Pearson's correlation coefficient (r = 0.081). Cytoplasmic maturation: A total of 85 in vitro-matured MII oocytes were fixed for CM evaluation. Forty-nine oocytes of them (57.6%) showed the complete CM, 30 (61.2%) presented a high/positively scoring ZP-BF and 19 (38.8%) had a low/negatively scoring ZP-BF. From 36 oocytes (42.3%) with incomplete CM, 18 (50%) presented a high/positively scoring ZPBF and 18 (50%) had a low/negatively scoring ZP-BF. No relationship was observed between CM and ZP-BF positive/negative scores (P = 0.42). These variables had a low Pearson's correlation coefficient (r = 0.11).Conclusions: The current study demonstrated an absence of relationship between ZP-BF high/positive or low/negative score and nuclear and cytoplasmic in vitro maturation of oocytes from stimulation cycles
Effects of recombinant LH supplementation to recombinant FSH during induced ovarian stimulation in the GnRH-agonist protocol: a matched case-control study
<p>Abstract</p> <p>Background</p> <p>Some studies have suggested that the suppression of endogenous LH secretion does not seem to affect the majority of patients who are undergoing assisted reproduction and stimulation with recombinant FSH (r-FSH). Other studies have indicated that a group of normogonadotrophic women down-regulated and stimulated with pure FSH preparations may experience low LH concentrations that compromise the IVF parameters. The present study aimed to compare the efficacy of recombinant LH (r-LH) supplementation for controlled ovarian stimulation in r-FSH and GnRH-agonist (GnRH-a) protocol in ICSI cycles.</p> <p>Methods</p> <p>A total of 244 patients without ovulatory dysfunction, aged <40 years and at the first ICSI cycle were divided into two groups matched by age according to an ovarian stimulation scheme: Group I (n = 122): Down-regulation with GnRH-a + r-FSH and Group II (n = 122): Down-regulation with GnRH-a + r-FSH and r-LH (beginning simultaneously).</p> <p>Result(s)</p> <p>The number of oocytes collected, the number of oocytes in metaphase II and fertilization rate were significantly lower in the Group I than in Group II (<it>P </it>= 0.036, <it>P </it>= 0.0014 and <it>P </it>= 0.017, respectively). In addition, the mean number of embryos produced per cycle and the mean number of frozen embryos per cycle were statistically lower (<it>P </it>= 0.0092 and <it>P </it>= 0.0008, respectively) in Group I than in Group II. Finally the cumulative implantation rate (fresh+thaw ed embryos) was significantly lower (<it>P </it>= 0.04) in Group I than in Group II. The other clinical and laboratory results analyzed did not show difference between groups.</p> <p>Conclusion</p> <p>These data support r-LH supplementation in ovarian stimulation protocols with r-FSH and GnRH-a for assisted reproduction treatment.</p
Efficacy of hyaluronic acid binding assay in selecting motile spermatozoa with normal morphology at high magnification
<p>Abstract</p> <p>Background</p> <p>The present study aimed to evaluate the efficacy of the hyaluronic acid (HA) binding assay in the selection of motile spermatozoa with normal morphology at high magnification (8400x).</p> <p>Methods</p> <p>A total of 16592 prepared spermatozoa were selected and classified into two groups: Group I, spermatozoa which presented their head attached to an HA substance (HA-bound sperm), and Group II, those spermatozoa that did not attach to the HA substance (HA-unbound sperm). HA-bound and HA-unbound spermatozoa were evaluated according to the following sperm forms: 1-Normal morphology: normal nucleus (smooth, symmetric and oval configuration, length: 4.75+/-2.8 μm and width: 3.28+/-0.20 μm, no extrusion or invagination and no vacuoles occupied more than 4% of the nuclear area) as well as acrosome, post-acrosomal lamina, neck, tail, besides not presenting a cytoplasmic droplet or cytoplasm around the head; 2-Abnormalities of nuclear form (a-Large/small; b-Wide/narrow; c-Regional disorder); 3-Abnormalities of nuclear chromatin content (a-Vacuoles: occupy >4% to 50% of the nuclear area and b-Large vacuoles: occupy >50% of the nuclear area) using a high magnification (8400x) microscopy system.</p> <p>Results</p> <p>No significant differences were obtained with respect to sperm morphological forms and the groups HA-bound and HA-unbound. 1-Normal morphology: HA-bound 2.7% and HA-unbound 2.5% (P = 0.56). 2-Abnormalities of nuclear form: a-Large/small: HA-bound 1.6% vs. HA-unbound 1.6% (P = 0.63); b-Wide/narrow: HA-bound 3.1% vs. HA-unbound 2.7% (P = 0.13); c-Regional disorders: HA-bound 4.7% vs. HA-unbound 4.4% (P = 0.34). 3. Abnormalities of nuclear chromatin content: a-Vacuoles >4% to 50%: HA-bound 72.2% vs. HA-unbound 72.5% (P = 0.74); b-Large vacuoles: HA-bound 15.7% vs. HA-unbound 16.3% (P = 0.36).</p> <p>Conclusions</p> <p>The findings suggest that HA binding assay has limited efficacy in selecting motile spermatozoa with normal morphology at high magnification.</p
Motile sperm organelle morphology examination (MSOME): intervariation study of normal sperm and sperm with large nuclear vacuoles
<p>Abstract</p> <p>Background</p> <p>Although the motile sperm organelle morphology examination (MSOME) was developed only as a selection criterion, its application as a method for classifying sperm morphology may represent an improvement in evaluation of semen quality, with potential clinical repercussions. The present study aimed to evaluate individual variations in the motile sperm organelle morphology examination (MSOME) analysis after a time interval.</p> <p>Methods</p> <p>Two semen samples were obtained from 240 men from an unselected group of couples undergoing infertility investigation and treatment. Mean time interval between the two semen evaluations was 119 +/- 102 days. No clinical or surgical treatment was realized between the two observations. Spermatozoa were analyzed at greater than or equal to 8400× magnification by inverted microscope equipped with DIC/Nomarski differential interference contrast optics. At least 200 motile spermatozoa per semen sample were evaluated and percentages of normal spermatozoa and spermatozoa with large nuclear vacuoles (LNV/one or more vacuoles occupying >50% of the sperm nuclear area) were determined. A spermatozoon was classified as morphologically normal when it exhibited a normal nucleus (smooth, symmetric and oval nucleus, width 3.28 +/- 0.20 μm, length 4.75 +/- 0.20 μm/absence of vacuoles occupying >4% of nuclear area) as well as acrosome, post-acrosomal lamina, neck and tail, besides not presenting cytoplasm around the head. One examiner, blinded to subject identity, performed the entire study.</p> <p>Results</p> <p>Mean percentages of morphologically normal and LNV spermatozoa were identical in the two MSOME analyses (1.6 +/- 2.2% vs. 1.6 +/- 2.1% <it>P </it>= 0.83 and 25.2 +/- 19.2% vs. 26.1 +/- 19.0% <it>P </it>= 0.31, respectively). Regression analysis between the two samples revealed significant positive correlation for morphologically normal and for LNV spermatozoa (r = 0.57 95% CI:0.47-0.65 <it>P </it>< 0.0001 and r = 0.50 95% CI:0.38-0.58 <it>P </it>< 0.0001, respectively).</p> <p>Conclusions</p> <p>The significant positive correlation and absence of differences between two sperm samples evaluated after a time interval with respect to normal morphology and LNV spermatozoa indicated that MSOME seems reliable (at least for these two specific sperm forms) for analyzing semen. The present result supports the future use of MSOME as a routine method for semen analysis.</p
Single-embryo transfer reduces clinical pregnancy rates and live births in fresh IVF and Intracytoplasmic Sperm Injection (ICSI) cycles: a meta-analysis
<p>Abstract</p> <p>Background</p> <p>It has become an accepted procedure to transfer more than one embryo to the patient to achieve acceptable ongoing pregnancy rates. However, transfers of more than a single embryo increase the probability of establishing a multiple gestation. Single-embryo transfer can minimize twin pregnancies but may also lower live birth rates. This meta-analysis aimed to compare current data on single-embryo versus double-embryo transfer in fresh IVF/ICSI cycles with respect to implantation, ongoing pregnancy and live birth rates.</p> <p>Methods</p> <p>Search strategies included on-line surveys of databases from 1995 to 2008. Data management and analysis were conducted using the Stats Direct statistical software. The fixed-effect model was used for odds ratio (OR). Fixed-effect effectiveness was evaluated by the Mantel Haenszel method. Seven trials fulfilled the inclusion criteria.</p> <p>Results</p> <p>When pooling results under the fixed-effect model, the implantation rate was not significantly different between double-embryo transfer (34.5%) and single-embryo transfer group (34.7%) (<it>P </it>= 0.96; OR = 0.99, 95% CI 0.78, 1.25). On the other hand, double-embryo transfer produced a statistically significantly higher ongoing clinical pregnancy rate (44.5%) than single-embryo transfer (28.3%) (<it>P </it>< 0.0001; OR:2.06, 95% CI = 1.64,2.60). At the same time, pooling results presented a significantly higher live birth rate when double-embryo transfer (42.5%) (P < 0.001; OR: 1.87, 95% CI = 1.44,2.42) was compared with single-embryo transfer (28.4%).</p> <p>Conclusion</p> <p>Meta-analysis with 95% confidence showed that, despite similar implantation rates, fresh double-embryo transfer had a 1.64 to 2.60 times greater ongoing pregnancy rate and 1.44 to 2.42 times greater live birth rate than single-embryo transfer in a population suitable for ART treatment.</p
The effects of male age on sperm analysis by motile sperm organelle morphology examination (MSOME)
<p>Abstract</p> <p>Background</p> <p>This study aimed to investigate the influence of age on sperm quality, as analysed by motile sperm organelle morphology examination (MSOME).</p> <p>Methods</p> <p>Semen samples were collected from 975 men undergoing evaluation or treatment for infertility. Sperm cells were evaluated at 8400× magnification using an inverted microscope equipped with Nomarski (differential interference contrast) optics. Two forms of spermatozoa were considered: normal spermatozoa and spermatozoa with large nuclear vacuoles (LNV, defined as vacuoles occupying > 50% of the sperm nuclear area). At least 200 spermatozoa per sample were evaluated, and the percentages of normal and LNV spermatozoa were determined. The subjects were divided into three groups according to age: Group I, less than or equal to 35 years; Group II, 36-40 years; and Group III, greater than or equal to 41 years.</p> <p>Results</p> <p>There was no difference in the percentages of normal sperm between the two younger (I and II) groups (<it>P ></it>0.05). The percentage of normal sperm in the older group (III) was significantly lower than that in the younger (I and II) groups (<it>P </it>< 0.05). There was no difference in the percentage of LNV spermatozoa between the younger (I and II) groups (<it>P ></it>0.05). The percentage of LNV spermatozoa was significantly higher in the older group (III) than in the younger (I and II) groups (<it>P </it>< 0.05). Regression analysis demonstrated a significant decrease in the incidence of normal sperm with increasing age (<it>P </it>< 0.05; r = -0.10). However, there was a significant positive correlation between the percentage of spermatozoa with LNV and male age (<it>P </it>< 0.05, r = 0.10).</p> <p>Conclusion</p> <p>The results demonstrated a consistent decline in semen quality, as reflected by morphological evaluation by MSOME, with increased age. Considering the relationship between nuclear vacuoles and DNA damage, these age-related changes predict that increased paternal age should be associated with unsuccessful or abnormal pregnancy as a consequence of fertilisation with damaged spermatozoa. Given that sperm nuclear vacuoles can be evaluated more precisely at high magnification, these results support the routine use of MSOME for ICSI as a criterion for semen analysis.</p
Efficacy of the motile sperm organelle morphology examination (MSOME) in predicting pregnancy after intrauterine insemination
Background: Although the motile sperm organelle morphology examination (MSOME) was developed merely as a selection criterion, its application as a method for classifying sperm morphology may represent an improvement in the evaluation of semen quality. The aim of this study was to determine the prognostic value of normal sperm morphology using MSOME with regard to clinical pregnancy (CP) after intrauterine insemination (IUI).Methods: A total of 156 IUI cycles that were performed in 111 couples were prospectively analysed. Each subject received 75 IU of recombinant FSH every second day from the third day of the cycle. Beginning on the 10th day of the cycle, follicular development was monitored by vaginal ultrasound. When one or two follicles measuring at least 17 mm were observed, recombinant hCG was administered, and IUI was performed 12-14 h and 36-40 h after hCG treatment. Prior to the IUI procedure, sperm samples were analysed by MSOME at 8400x magnification using an inverted microscope that was equipped with DIC/Nomarski differential interference contrast optics. A minimum of 200 motile spermatozoa per semen sample were evaluated, and the percentage of normal spermatozoa in each sample was determined.Results: Pregnancy occurred in 34 IUI cycles (CP rate per cycle: 21.8%, per patient: 30.6%). Based on the MSOME criteria, a significantly higher percentage of normal spermatozoa was found in the group of men in which the IUI cycles resulted in pregnancy (2.6+/-3.1%) compared to the group that did not achieve pregnancy (1.2+/-1.7%; P = 0.019). Logistic regression showed that the percentage of normal cells in the MSOME was a determining factor for the likelihood of clinical pregnancy (OR: 1.28; 95% CI: 1.08 to 1.51; P = 0.003). The ROC curve revealed an area under the curve of 0.63 and an optimum cut-off point of 2% of normal sperm morphology. At this cut-off threshold, using the percentage of normal sperm morphology by MSOME to predict pregnancy was 50% sensitive with a 40% positive predictive value and 79% specificity with an 85% negative predictive value. The efficacy of using the percentage of normal sperm morphology by MSOME in predicting pregnancy was 65%.Conclusions: The present findings support the use of high-magnification microscopy both for selecting spermatozoa and as a routine method for analysing semen before performing IUI