41 research outputs found

    On non-existence of static vacuum black holes with degenerate components of the event horizon

    Full text link
    We present a simple proof of the non-existence of degenerate components of the event horizon in static, vacuum, regular, four-dimensional black hole spacetimes. We discuss the generalisation to higher dimensions and the inclusion of a cosmological constant.Comment: latex2e, 9 pages in A

    Gluing Initial Data Sets for General Relativity

    Full text link
    We establish an optimal gluing construction for general relativistic initial data sets. The construction is optimal in two distinct ways. First, it applies to generic initial data sets and the required (generically satisfied) hypotheses are geometrically and physically natural. Secondly, the construction is completely local in the sense that the initial data is left unaltered on the complement of arbitrarily small neighborhoods of the points about which the gluing takes place. Using this construction we establish the existence of cosmological, maximal globally hyperbolic, vacuum space-times with no constant mean curvature spacelike Cauchy surfaces.Comment: Final published version - PRL, 4 page

    A Remark on Boundary Effects in Static Vacuum Initial Data sets

    Full text link
    Let (M, g) be an asymptotically flat static vacuum initial data set with non-empty compact boundary. We prove that (M, g) is isometric to a spacelike slice of a Schwarzschild spacetime under the mere assumption that the boundary of (M, g) has zero mean curvature, hence generalizing a classic result of Bunting and Masood-ul-Alam. In the case that the boundary has constant positive mean curvature and satisfies a stability condition, we derive an upper bound of the ADM mass of (M, g) in terms of the area and mean curvature of the boundary. Our discussion is motivated by Bartnik's quasi-local mass definition.Comment: 10 pages, to be published in Classical and Quantum Gravit

    Solutions of special asymptotics to the Einstein constraint equations

    Full text link
    We construct solutions with prescribed asymptotics to the Einstein constraint equations using a cut-off technique. Moreover, we give various examples of vacuum asymptotically flat manifolds whose center of mass and angular momentum are ill-defined.Comment: 13 pages; the error in Lemma 3.5 fixed and typos corrected; to appear in Class. Quantum Gra

    On the Nature of Singularities in Plane Symmetric Scalar Field Cosmologies

    Get PDF
    The nature of the initial singularity in spatially compact plane symmetric scalar field cosmologies is investigated. It is shown that this singularity is crushing and velocity dominated and that the Kretschmann scalar diverges uniformly as it is approached. The last fact means in particular that a maximal globally hyperbolic spacetime in this class cannot be extended towards the past through a Cauchy horizon. A subclass of these spacetimes is identified for which the singularity is isotropic.Comment: 7 pages, MPA-AR-94-

    Rotating solitons and non-rotating, non-static black holes

    Get PDF
    It is shown that the non-Abelian black hole solutions have stationary generalizations which are parameterized by their angular momentum and electric Yang-Mills charge. In particular, there exists a non-static class of stationary black holes with vanishing angular momentum. It is also argued that the particle-like Bartnik-McKinnon solutions admit slowly rotating, globally regular excitations. In agreement with the non-Abelian version of the staticity theorem, these non-static soliton excitations carry electric charge, although their non-rotating limit is neutral.Comment: 5 pages, REVTe

    Slowly Rotating Non-Abelian Black Holes

    Get PDF
    It is shown that the well-known non-Abelian static SU(2) black hole solutions have rotating generalizations, provided that the hypothesis of linearization stability is accepted. Surprisingly, this rotating branch has an asymptotically Abelian gauge field with an electric charge that cannot vanish, although the non-rotating limit is uncharged. We argue that this may be related to our second finding, namely that there are no globally regular slowly rotating excitations of the particle-like Bartnik-McKinnon solutions.Comment: 8 pages, LaTe

    Dain's invariant on non-time symmetric initial data sets

    Get PDF
    We extend Dain's construction of a geometric invariant characterising static initial data sets for the vacuum Einstein field equations to situations with a non-vanishing extrinsic curvature. This invariant gives a measure of how much the initial data sets deviates from stationarity. In particular, it vanishes if and only if the initial data set is stationary. Thus, the invariant provides a quantification of the amount of gravitational radiation contained in the initial data set

    Deformations of the hemisphere that increase scalar curvature

    Full text link
    Consider a compact Riemannian manifold M of dimension n whose boundary \partial M is totally geodesic and is isometric to the standard sphere S^{n-1}. A natural conjecture of Min-Oo asserts that if the scalar curvature of M is at least n(n-1), then M is isometric to the hemisphere S_+^n equipped with its standard metric. This conjecture is inspired by the positive mass theorem in general relativity, and has been verified in many special cases. In this paper, we construct counterexamples to Min-Oo's conjecture in dimension n \geq 3.Comment: Revised version, to appear in Invent. Mat
    corecore