335 research outputs found
Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations
<p>Abstract</p> <p>Background</p> <p>Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disorder that can be triggered through genetic or sporadic mechanisms. MicroRNAs (miRNAs) have become a major therapeutic focus as their pervasive expression and powerful regulatory roles in disease pathogenesis become increasingly apparent. Here we examine the role of miRNAs in FTLD patients with TAR DNA-binding protein 43 pathology (FTLD-TDP) caused by genetic mutations in the progranulin (<it>PGRN</it>) gene.</p> <p>Results</p> <p>Using miRNA array profiling, we identified the 20 miRNAs that showed greatest evidence (unadjusted P < 0.05) of dysregulation in frontal cortex of eight FTLD-TDP patients carrying <it>PGRN </it>mutations when compared to 32 FTLD-TDP patients with no apparent genetic abnormalities. Quantitative real-time PCR (qRT-PCR) analyses provided technical validation of the differential expression for 9 of the 20 miRNAs in frontal cortex. Additional qRT-PCR analyses showed that 5 out of 9 miRNAs (miR-922, miR-516a-3p, miR-571, miR-548b-5p, and miR-548c-5p) were also significantly dysregulated (unadjusted P < 0.05) in cerebellar tissue samples of <it>PGRN </it>mutation carriers, consistent with a systemic reduction in PGRN levels. We developed a list of gene targets for the 5 candidate miRNAs and found 18 genes dysregulated in a reported FTLD mRNA study to exhibit anti-correlated miRNA-mRNA patterns in affected cortex and cerebellar tissue. Among the targets is brain-specific angiogenesis inhibitor 3, which was recently identified as an important player in synapse biology.</p> <p>Conclusions</p> <p>Our study suggests that miRNAs may contribute to the pathogenesis of FTLD-TDP caused by <it>PGRN </it>mutations and provides new insight into potential future therapeutic options.</p
A Signature of Maternal Anti-Fetal Rejection in Spontaneous Preterm Birth: Chronic Chorioamnionitis, Anti-Human Leukocyte Antigen Antibodies, and C4d
Chronic chorioamnionitis is found in more than one-third of spontaneous preterm births. Chronic chorioamnionitis and villitis of unknown etiology represent maternal anti-fetal cellular rejection. Antibody-mediated rejection is another type of transplantation rejection. We investigated whether there was evidence for antibody-mediated rejection against the fetus in spontaneous preterm birth.This cross-sectional study included women with (1) normal pregnancy and term delivery (n = 140) and (2) spontaneous preterm delivery (n = 140). We analyzed maternal and fetal sera for panel-reactive anti-HLA class I and class II antibodies, and determined C4d deposition on umbilical vein endothelium by immunohistochemistry. Maternal anti-HLA class I seropositivity in spontaneous preterm births was higher than in normal term births (48.6% vs. 32.1%, p = 0.005). Chronic chorioamnionitis was associated with a higher maternal anti-HLA class I seropositivity (p<0.01), significant in preterm and term birth. Villitis of unknown etiology was associated with increased maternal and fetal anti-HLA class I and II seropositivity (p<0.05, for each). Fetal anti-HLA seropositivity was closely related to maternal anti-HLA seropositivity in both groups (p<0.01, for each). C4d deposition on umbilical vein endothelium was more frequent in preterm labor than term labor (77.1% vs. 11.4%, p<0.001). Logistic regression analysis revealed that chronic chorioamnionitis (OR = 6.10, 95% CI 1.29–28.83), maternal anti-HLA class I seropositivity (OR = 5.90, 95% CI 1.60–21.83), and C4d deposition on umbilical vein endothelium (OR = 36.19, 95% CI 11.42–114.66) were associated with preterm labor and delivery.A major subset of spontaneous preterm births has a signature of maternal anti-fetal cellular and antibody-mediated rejections with links to fetal graft-versus-host disease and alloimmune reactions
MicroRNA-Mediated Positive Feedback Loop and Optimized Bistable Switch in a Cancer Network Involving miR-17-92
MicroRNAs (miRNAs) are small, noncoding RNAs that play an important role in many key biological processes, including development, cell differentiation, the cell cycle and apoptosis, as central post-transcriptional regulators of gene expression. Recent studies have shown that miRNAs can act as oncogenes and tumor suppressors depending on the context. The present work focuses on the physiological significance of miRNAs and their role in regulating the switching behavior. We illustrate an abstract model of the Myc/E2F/miR-17-92 network presented by Aguda et al. (2008), which is composed of coupling between the E2F/Myc positive feedback loops and the E2F/Myc/miR-17-92 negative feedback loop. By systematically analyzing the network in close association with plausible experimental parameters, we show that, in the presence of miRNAs, the system bistability emerges from the system, with a bistable switch and a one-way switch presented by Aguda et al. instead of a single one-way switch. Moreover, the miRNAs can optimize the switching process. The model produces a diverse array of response-signal behaviors in response to various potential regulating scenarios. The model predicts that this transition exists, one from cell death or the cancerous phenotype directly to cell quiescence, due to the existence of miRNAs. It was also found that the network involving miR-17-92 exhibits high noise sensitivity due to a positive feedback loop and also maintains resistance to noise from a negative feedback loop
Evolution of the human-specific microRNA miR-941
MicroRNA-mediated gene regulation is important in many physiological processes. Here we explore the roles of a microRNA, miR-941, in human evolution. We find that miR-941 emerged de novo in the human lineage, between six and one million years ago, from an evolutionarily volatile tandem repeat sequence. Its copy-number remains polymorphic in humans and shows a trend for decreasing copy-number with migration out of Africa. Emergence of miR-941 was accompanied by accelerated loss of miR-941-binding sites, presumably to escape regulation. We further show that miR-941 is highly expressed in pluripotent cells, repressed upon differentiation and preferentially targets genes in hedgehog- and insulin-signalling pathways, thus suggesting roles in cellular differentiation. Human-specific effects of miR-941 regulation are detectable in the brain and affect genes involved in neurotransmitter signalling. Taken together, these results implicate miR-941 in human evolution, and provide an example of rapid regulatory evolution in the human linage
Preferential regulation of miRNA targets by environmental chemicals in the human genome
<p>Abstract</p> <p>Background</p> <p>microRNAs (miRNAs) represent a class of small (typically 22 nucleotides in length) non-coding RNAs that can degrade their target mRNAs or block their translation. Recent disease research showed the exposure to some environmental chemicals (ECs) can regulate the expression patterns of miRNAs, which raises the intriguing question of how miRNAs and their targets cope with the exposure to ECs throughout the genome.</p> <p>Results</p> <p>In this study, we comprehensively analyzed the properties of genes regulated by ECs (EC-genes) and found miRNA targets were significantly enriched among the EC-genes. Compared with the non-miRNA-targets, miRNA targets were roughly twice as likely to be EC-genes. By investigating the collection methods and other properties of the EC-genes, we demonstrated that the enrichment of miRNA targets was not attributed to either the potential collection bias of EC-genes, the presence of paralogs, longer 3'UTRs or more conserved 3'UTRs. Finally, we identified 1,842 significant concurrent interactions between 407 miRNAs and 497 ECs. This association network of miRNAs-ECs was highly modular and could be separated into 14 interconnected modules. In each module, miRNAs and ECs were closely connected, providing a good method to design accurate miRNA markers for ECs in toxicology research.</p> <p>Conclusions</p> <p>Our analyses indicated that miRNAs and their targets played important roles in cellular responses to ECs. Association analyses of miRNAs and ECs will help to broaden the understanding of the pathogenesis of such chemical components.</p
Gene Regulation in Giardia lambia Involves a Putative MicroRNA Derived from a Small Nucleolar RNA
Two core microRNA (miRNA) pathway proteins, Dicer and Argonaute, are found in Giardia lamblia, a deeply branching parasitic protozoan. There are, however, no apparent homologues of Drosha or Exportin5 in the genome. Here, we report a 26 nucleotide (nt) RNA derived from a 106 nt Box C/D snoRNA, GlsR2. This small RNA, designated miR5, localizes to the 3′ end of GlsR2 and has a 75 nt hairpin precursor. GlsR2 is processed by the Dicer from Giardia (GlDcr) and generated miR5. Immunoprecipitation of the Argonaute from Giardia (GlAgo) brought down miR5. When a Renilla Luciferase transcript with a 26 nt miR5 antisense sequence at the 3′-untranslated region (3′ UTR) was introduced into Giardia trophozoites, Luciferase expression was reduced ∼25% when synthetic miR5 was also introduced. The Luciferase mRNA level remained, however, unchanged, suggesting translation repression by miR5. This inhibition was fully reversed by introducing also a 2′-O-methylated antisense inhibitor of miR5, suggesting that miR5 acts by interacting specifically with the antisense sequence in the mRNA. A partial antisense knock down of GlDcr or GlAgo in Giardia indicated that the former is needed for miR5 biogenesis whereas the latter is required for miR5-mediated translational repression. Potential targets for miR5 with canonical seed sequences were predicted bioinformatically near the stop codon of Giardia mRNAs. Four out of the 21 most likely targets were tested in the Luciferase reporter assay. miR5 was found to inhibit Luciferase expression (∼20%) of transcripts carrying these potential target sites, indicating that snoRNA-derived miRNA can regulate the expression of multiple genes in Giardia
Evolutionary Modeling and Prediction of Non-Coding RNAs in Drosophila
We performed benchmarks of phylogenetic grammar-based ncRNA gene prediction, experimenting with eight different models of structural evolution and two different programs for genome alignment. We evaluated our models using alignments of twelve Drosophila genomes. We find that ncRNA prediction performance can vary greatly between different gene predictors and subfamilies of ncRNA gene. Our estimates for false positive rates are based on simulations which preserve local islands of conservation; using these simulations, we predict a higher rate of false positives than previous computational ncRNA screens have reported. Using one of the tested prediction grammars, we provide an updated set of ncRNA predictions for D. melanogaster and compare them to previously-published predictions and experimental data. Many of our predictions show correlations with protein-coding genes. We found significant depletion of intergenic predictions near the 3′ end of coding regions and furthermore depletion of predictions in the first intron of protein-coding genes. Some of our predictions are colocated with larger putative unannotated genes: for example, 17 of our predictions showing homology to the RFAM family snoR28 appear in a tandem array on the X chromosome; the 4.5 Kbp spanned by the predicted tandem array is contained within a FlyBase-annotated cDNA
MicroRNA expression as risk biomarker of breast cancer metastasis : a pilot retrospective case-cohort study
Background: MicroRNAs (miRNAs) are small, non-coding RNA molecules involved in post-transcriptional gene regulation and have recently been shown to play a role in cancer metastasis. In solid tumors, especially breast cancer, alterations in miRNA expression contribute to cancer pathogenesis, including metastasis. Considering the emerging role of miRNAs in metastasis, the identification of predictive markers is necessary to further the understanding of stage-specific breast cancer development. This is a retrospective analysis that aimed to identify molecular biomarkers related to distant breast cancer metastasis development.
Methods: A retrospective case cohort study was performed in 64 breast cancer patients treated during the period from 1998-2001. The case group (n = 29) consisted of patients with a poor prognosis who presented with breast cancer recurrence or metastasis during follow up. The control group (n = 35) consisted of patients with a good prognosis who did not develop breast cancer recurrence or metastasis. These patient groups were stratified according to TNM clinical stage (CS) I, II and III, and the main clinical features of the patients were homogeneous. MicroRNA profiling was performed and biomarkers related to metastatic were identified independent of clinical stage. Finally, a hazard risk analysis of these biomarkers was performed to evaluate their relation to metastatic potential.
Results: MiRNA expression profiling identified several miRNAs that were both specific and shared across all clinical stages (p <= 0.05). Among these, we identified miRNAs previously associated with cell motility (let-7 family) and distant metastasis (hsa-miR-21). In addition, hsa-miR-494 and hsa-miR-21 were deregulated in metastatic cases of CSI and CSII. Furthermore, metastatic miRNAs shared across all clinical stages did not present high sensitivity and specificity when compared to specific-CS miRNAs. Between them, hsa-miR-183 was the most significative of CSII, which miRNAs combination for CSII (hsa-miR-494, hsa-miR-183 and hsa-miR-21) was significant and were a more effective risk marker compared to the single miRNAs.
Conclusions: Women with metastatic breast cancer, especially CSII, presented up-regulated levels of miR-183, miR-494 and miR-21, which were associated with a poor prognosis. These miRNAs therefore represent new risk biomarkers of breast cancer metastasis and may be useful for future targeted therapies.We thank the Researcher Support Center of Barretos Cancer Hospital, especially the statistician Zanardo C. for assisting in the statistical analysis.This study received financial support from Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Fapesp, Proc: 10/ 16796-0, Sao Paulo, Brazil)
Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients
<p>Abstract</p> <p>Background</p> <p>HIV-1-infected elite controllers or suppressors (ES) maintain undetectable viral loads (< 50 copies/mL) without antiretroviral therapy. The mechanisms of suppression are incompletely understood. Modulation of HIV-1 replication by miRNAs has been reported, but the role of small RNAs in ES is unknown. Using samples from a well-characterized ES cohort, untreated viremic patients, and uninfected controls, we explored the PBMC miRNA profile and probed the relationships of miRNA expression, CD4+ T-cell counts, and viral load.</p> <p>Results</p> <p>miRNA profiles, obtained using multiple acquisition, data processing, and analysis methods, distinguished ES and uninfected controls from viremic HIV-1-infected patients. For several miRNAs, however, ES and viremic patients shared similar expression patterns. Differentially expressed miRNAs included those with reported roles in HIV-1 latency (miR-29 family members, miRs -125b and -150). Others, such as miR-31 and miR-31*, had no previously reported connection with HIV-1 infection but were found here to differ significantly with uncontrolled HIV-1 replication. Correlations of miRNA expression with CD4+ T-cell count and viral load were found, and we observed that ES with low CD4+ T-cell counts had miRNA profiles more closely related to viremic patients than controls. However, expression patterns indicate that miRNA variability cannot be explained solely by CD4+ T-cell variation.</p> <p>Conclusions</p> <p>The intimate involvement of miRNAs in disease processes is underscored by connections of miRNA expression with the HIV disease clinical parameters of CD4 count and plasma viral load. However, miRNA profile changes are not explained completely by these variables. Significant declines of miRs-125b and -150, among others, in both ES and viremic patients indicate the persistence of host miRNA responses or ongoing effects of infection despite viral suppression by ES. We found no negative correlations with viral load in viremic patients, not even those that have been reported to silence HIV-1 in vitro, suggesting that the effects of these miRNAs are exerted in a focused, cell-type-specific manner. Finally, the observation that some ES with low CD4 counts were consistently related to viremic patients suggests that miRNAs may serve as biomarkers for risk of disease progression even in the presence of viral suppression.</p
- …