199 research outputs found

    O(1) Computation of Legendre polynomials and Gauss-Legendre nodes and weights for parallel computing

    Get PDF
    A self-contained set of algorithms is proposed for the fast evaluation of Legendre polynomials of arbitrary degree and argument is an element of [-1, 1]. More specifically the time required to evaluate any Legendre polynomial, regardless of argument and degree, is bounded by a constant; i.e., the complexity is O(1). The proposed algorithm also immediately yields an O(1) algorithm for computing an arbitrary Gauss-Legendre quadrature node. Such a capability is crucial for efficiently performing certain parallel computations with high order Legendre polynomials, such as computing an integral in parallel by means of Gauss-Legendre quadrature and the parallel evaluation of Legendre series. In order to achieve the O(1) complexity, novel efficient asymptotic expansions are derived and used alongside known results. A C++ implementation is available from the authors that includes the evaluation routines of the Legendre polynomials and Gauss-Legendre quadrature rules

    Parallel fast multipole methods for the simulation of extremely large electromagnetic scattering problems

    Get PDF

    Weak scalability analysis of the distributed-memory parallel MLFMA

    Get PDF
    Distributed-memory parallelization of the multilevel fast multipole algorithm (MLFMA) relies on the partitioning of the internal data structures of the MLFMA among the local memories of networked machines. For three existing data partitioning schemes (spatial, hybrid and hierarchical partitioning), the weak scalability, i.e., the asymptotic behavior for proportionally increasing problem size and number of parallel processes, is analyzed. It is demonstrated that none of these schemes are weakly scalable. A nontrivial change to the hierarchical scheme is proposed, yielding a parallel MLFMA that does exhibit weak scalability. It is shown that, even for modest problem sizes and a modest number of parallel processes, the memory requirements of the proposed scheme are already significantly lower, compared to existing schemes. Additionally, the proposed scheme is used to perform full-wave simulations of a canonical example, where the number of unknowns and CPU cores are proportionally increased up to more than 200 millions of unknowns and 1024 CPU cores. The time per matrix-vector multiplication for an increasing number of unknowns and CPU cores corresponds very well to the theoretical time complexity

    Performing large full-wave simulations by means of a parallel MLFMA implementation

    Get PDF
    In this paper large full-wave simulations are performed using a parallel Multilevel Fast Multipole Algorithm (MLFMA) implementation. The data structures of the MLFMA-tree are partitioned according to the so-called hierarchical partitioning scheme, while the radiation patterns are partitioned in a blockwise way. To test the implementation of the algorithm, a full-wave simulation of a canonical example with more than 50 millions of unknowns has been performed

    Scalable parallel computation of the translation operator in three dimensions

    Get PDF
    We propose a novel algorithm for the parallel, distributed-memory computation of the translation operator in the three-dimensional multilevel fast multipole algorithm (MLFMA). Sequential algorithms can compute the translation operator with L multipoles and O(L-2) sampling points in O(L-2) time. State-of-the-art hierarchical parallelization schemes of the MLFMA rely on the distribution of radiation patterns and associated translation operators among P = O(L-2) parallel processes, necessitating the development of distributed-memory algorithms for the computation of the translation operator. Whereas a baseline parallel algorithm computes this translation operator in O(L) time, we propose an algorithm that achieves this in only O(log L) time. For large translation operators and a high number of parallel processes, our algorithm proves to be roughly ten times faster than the baseline algorithm
    • …
    corecore