23 research outputs found

    Contemporary divergence in early life history in grayling (Thymallus thymallus)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Following colonization of new habitats and subsequent selection, adaptation to environmental conditions might be expected to be rapid. In a mountain lake in Norway, Lesjaskogsvatnet, more than 20 distinct spawning demes of grayling have been established since the lake was colonized, some 20-25 generations ago. The demes spawn in tributaries consistently exhibiting either colder or warmer temperature conditions during spawning in spring and subsequent early development during early summer. In order to explore the degree of temperature-related divergence in early development, a multi-temperature common-garden experiment was performed on embryos from four different demes experiencing different spring temperatures.</p> <p>Results</p> <p>Early developmental characters were measured to test if individuals from the four demes respond differently to the treatment temperatures. There was clear evidence of among-deme differences (genotype - environment interactions) in larval growth and yolk-to-body-size conversion efficiency. Under the cold treatment regime, larval growth rates were highest for individuals belonging to cold streams. Individuals from warm streams had the highest yolk-consumption rate under cold conditions. As a consequence, yolk-to-body-mass conversion efficiency was highest for cold-deme individuals under cold conditions. As we observed response parallelism between individuals from demes belonging to similar thermal groups for these traits, some of the differentiation seems likely to result from local adaptation</p> <p>Conclusion</p> <p>The observed differences in length at age during early larval development most likely have a genetic component, even though both directional and random processes are likely to have influenced evolutionary change in the demes under study.</p

    Individual variation in male mating preferences for female coloration in a polymorphic cichlid fish

    Get PDF
    Female color polymorphisms are common in the cichlid species radiations of Lake Victoria and Lake Malawi. According to theory, when a population harbors variation in sex-determining factors, polymorphism in female-linked coloration might generate individual variation in male mating preferences for female color morphs. We tested whether individual males exhibit consistent mating preferences for female color morphs in the Lake Malawi cichlid Pseudotropheus (Maylandia) ‘zebra gold', a species polymorphic for female coloration and sex determination. We also explored whether male mating preferences could be predicted by maternal coloration or were acquired by imprinting on siblings' coloration. We found large individual variation in the strength and direction of male preferences for sex-linked female color patterns. Male mating preferences could be predicted by the mother's color morph and were not affected by visual imprinting. These findings represent the first evidence of male choice on sex-linked female coloration in a Lake Malawi cichlid. Our analysis indicates a strong genetic component to male preference for female coloration and large individual variation in the strength and direction of male mating preferences. Within-population variation in innate mating preferences might have important implications in cichlid fish species radiation

    Beyond large-effect loci : large-scale GWAS reveals a mixed large-effect and polygenic architecture for age at maturity of Atlantic salmon

    Get PDF
    Background Understanding genetic architecture is essential for determining how traits will change in response to evolutionary processes such as selection, genetic drift and/or gene flow. In Atlantic salmon, age at maturity is an important life history trait that affects factors such as survival, reproductive success, and growth. Furthermore, age at maturity can seriously impact aquaculture production. Therefore, characterizing the genetic architecture that underlies variation in age at maturity is of key interest. Results Here, we refine our understanding of the genetic architecture for age at maturity of male Atlantic salmon using a genome-wide association study of 11,166 males from a single aquaculture strain, using imputed genotypes at 512,397 single nucleotide polymorphisms (SNPs). All individuals were genotyped with a 50K SNP array and imputed to higher density using parents genotyped with a 930K SNP array and pedigree information. We found significant association signals on 28 of 29 chromosomes (P-values: 8.7 x 10(-133)-9.8 x 10(-8)), including two very strong signals spanning the six6 and vgll3 gene regions on chromosomes 9 and 25, respectively. Furthermore, we identified 116 independent signals that tagged 120 candidate genes with varying effect sizes. Five of the candidate genes found here were previously associated with age at maturity in other vertebrates, including humans. Discussion These results reveal a mixed architecture of large-effect loci and a polygenic component that consists of multiple smaller-effect loci, suggesting a more complex genetic architecture of Atlantic salmon age at maturity than previously thought. This more complex architecture will have implications for selection on this key trait in aquaculture and for management of wild salmon populations.Peer reviewe

    Beyond large-effect loci : large-scale GWAS reveals a mixed large-effect and polygenic architecture for age at maturity of Atlantic salmon

    Get PDF
    Background Understanding genetic architecture is essential for determining how traits will change in response to evolutionary processes such as selection, genetic drift and/or gene flow. In Atlantic salmon, age at maturity is an important life history trait that affects factors such as survival, reproductive success, and growth. Furthermore, age at maturity can seriously impact aquaculture production. Therefore, characterizing the genetic architecture that underlies variation in age at maturity is of key interest. Results Here, we refine our understanding of the genetic architecture for age at maturity of male Atlantic salmon using a genome-wide association study of 11,166 males from a single aquaculture strain, using imputed genotypes at 512,397 single nucleotide polymorphisms (SNPs). All individuals were genotyped with a 50K SNP array and imputed to higher density using parents genotyped with a 930K SNP array and pedigree information. We found significant association signals on 28 of 29 chromosomes (P-values: 8.7 x 10(-133)-9.8 x 10(-8)), including two very strong signals spanning the six6 and vgll3 gene regions on chromosomes 9 and 25, respectively. Furthermore, we identified 116 independent signals that tagged 120 candidate genes with varying effect sizes. Five of the candidate genes found here were previously associated with age at maturity in other vertebrates, including humans. Discussion These results reveal a mixed architecture of large-effect loci and a polygenic component that consists of multiple smaller-effect loci, suggesting a more complex genetic architecture of Atlantic salmon age at maturity than previously thought. This more complex architecture will have implications for selection on this key trait in aquaculture and for management of wild salmon populations.Peer reviewe

    Dissecting the loci underlying maturation timing in Atlantic salmon using haplotype and multi-SNP based association methods

    Get PDF
    Characterizing the role of different mutational effect sizes in the evolution of fitness-related traits has been a major goal in evolutionary biology for a century. Such characterization in a diversity of systems, both model and non-model, will help to understand the genetic processes underlying fitness variation. However, well-characterized genetic architectures of such traits in wild populations remain uncommon. In this study, we used haplotype-based and multi-SNP Bayesian association methods with sequencing data for 313 individuals from wild populations to test the mutational composition of known candidate regions for sea age at maturation in Atlantic salmon (Salmo salar). We detected an association at five loci out of 116 candidates previously identified in an aquaculture strain with maturation timing in wild Atlantic salmon. We found that at four of these five loci, variation explained by the locus was predominantly driven by a single SNP suggesting the genetic architecture of this trait includes multiple loci with simple, non-clustered alleles and a locus with potentially more complex alleles. This highlights the diversity of genetic architectures that can exist for fitness-related traits. Furthermore, this study provides a useful multi-SNP framework for future work using sequencing data to characterize genetic variation underlying phenotypes in wild populations.Peer reviewe

    Sexual selection and the genetics of reproductive isolation in Lake Malawi cichlid fishes

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Beyond large-effect loci: Large-scale GWAS reveals a mixed large-effect and polygenic architecture for age at maturity of Atlantic salmon

    No full text
    Background. Understanding genetic architecture is essential for determining how traits will change in response to evolutionary processes such as selection, genetic drift and/or gene flow. In Atlantic salmon, age at maturity is an important life history trait that affects factors such as survival, reproductive success, and growth. Furthermore, age at maturity can seriously impact aquaculture production. Therefore, characterizing the genetic architecture that underlies variation in age at maturity is of key interest. Results. Here, we refine our understanding of the genetic architecture for age at maturity of male Atlantic salmon using a genome-wide association study of 11,166 males from a single aquaculture strain, using imputed genotypes at 512,397 single nucleotide polymorphisms (SNPs). All individuals were genotyped with a 50K SNP array and imputed to higher density using parents genotyped with a 930K SNP array and pedigree information. We found significant association signals on 28 of 29 chromosomes (P-values: 8.7 × 10−133–9.8 × 10−8), including two very strong signals spanning the six6 and vgll3 gene regions on chromosomes 9 and 25, respectively. Furthermore, we identified 116 independent signals that tagged 120 candidate genes with varying effect sizes. Five of the candidate genes found here were previously associated with age at maturity in other vertebrates, including humans. Discussion. These results reveal a mixed architecture of large-effect loci and a polygenic component that consists of multiple smaller-effect loci, suggesting a more complex genetic architecture of Atlantic salmon age at maturity than previously thought. This more complex architecture will have implications for selection on this key trait in aquaculture and for management of wild salmon populations

    High levels of psychosocial distress among Australian frontline healthcare workers during the COVID-19 pandemic: a cross-sectional survey

    Get PDF
    BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has had a profound and prolonged impact on healthcare services and healthcare workers. AIMS: The Australian COVID-19 Frontline Healthcare Workers Study aimed to investigate the severity and prevalence of mental health issues, as well as the social, workplace and financial disruptions experienced by Australian healthcare workers during the COVID-19 pandemic. METHODS: A nationwide, voluntary, anonymous, single timepoint, online survey was conducted between 27 August and 23 October 2020. Individuals self-identifying as frontline healthcare workers in secondary or primary care were invited to participate. Participants were recruited through health organisations, professional associations or colleges, universities, government contacts and national media. Demographics, home and work situation, health and psychological well-being data were collected. RESULTS: A total of 9518 survey responses were received; of the 9518 participants, 7846 (82.4%) participants reported complete data. With regard to age, 4110 (52.4%) participants were younger than 40 years; 6344 (80.9%) participants were women. Participants were nurses (n=3088, 39.4%), doctors (n=2436, 31.1%), allied health staff (n=1314, 16.7%) or in other roles (n=523, 6.7%). In addition, 1250 (15.9%) participants worked in primary care. Objectively measured mental health symptoms were common: mild to severe anxiety (n=4694, 59.8%), moderate to severe burnout (n=5458, 70.9%) and mild to severe depression (n=4495, 57.3%). Participants were highly resilient (mean (SD)=3.2 (0.66)). Predictors for worse outcomes on all scales included female gender; younger age; pre-existing psychiatric condition; experiencing relationship problems; nursing, allied health or other roles; frontline area; being worried about being blamed by colleagues and working with patients with COVID-19. CONCLUSIONS: The COVID-19 pandemic is associated with significant mental health symptoms in frontline healthcare workers. Crisis preparedness together with policies and practices addressing psychological well-being are needed
    corecore