157 research outputs found
Reducing Legionella Colonization of Water Systems with Monochloramine
Monochloramine reduced colonization in building hot water systems
Restaurant outbreak of Legionnaires' disease associated with a decorative fountain: an environmental and case-control study
BACKGROUND: From June to November 2005, 18 cases of community-acquired Legionnaires' disease (LD) were reported in Rapid City South Dakota. We conducted epidemiologic and environmental investigations to identify the source of the outbreak. METHODS: We conducted a case-control study that included the first 13 cases and 52 controls randomly selected from emergency department records and matched on underlying illness. We collected information about activities of case-patients and controls during the 14 days before symptom onset. Environmental samples (n = 291) were cultured for Legionella. Clinical and environmental isolates were compared using monoclonal antibody subtyping and sequence based typing (SBT). RESULTS: Case-patients were significantly more likely than controls to have passed through several city areas that contained or were adjacent to areas with cooling towers positive for Legionella. Six of 11 case-patients (matched odds ratio (mOR) 32.7, 95% CI 4.7-infinity) reported eating in Restaurant A versus 0 controls. Legionella pneumophila serogroup 1 was isolated from four clinical specimens: 3 were Benidorm type strains and 1 was a Denver type strain. Legionella were identified from several environmental sites including 24 (56%) of 43 cooling towers tested, but only one site, a small decorative fountain in Restaurant A, contained Benidorm, the outbreak strain. Clinical and environmental Benidorm isolates had identical SBT patterns. CONCLUSION: This is the first time that small fountain without obvious aerosol-generating capability has been implicated as the source of a LD outbreak. Removal of the fountain halted transmission
Survey of Legionella
Members of the Gram-negative genus Legionella are typically found in freshwater environments, with the exception of L. longbeachae, which is present in composts and potting mixes. When contaminated aerosols are inhaled, legionellosis may result, typically as either the more serious pneumonia Legionnaires’ disease or the less severe flu-like illness Pontiac fever. It is presumed that all species of the genus Legionella are capable of causing disease in humans. As a followup to a prior clinical study of legionellosis in rural Thailand, indigenous soil samples were collected proximal to cases’ homes and workplaces and tested for the presence of legionellae by culture. We obtained 115 isolates from 22/39 soil samples and used sequence-based methods to identify 12 known species of Legionella represented by 87 isolates
Comparison of Replication-Competent, First Generation, and Helper-Dependent Adenoviral Vaccines
All studies using human serotype 5 Adenovirus (Ad) vectors must address two major obstacles: safety and the presence of pre-existing neutralizing antibodies. Helper-Dependent (HD) Ads have been proposed as alternative vectors for gene therapy and vaccine development because they have an improved safety profile. To evaluate the potential of HD-Ad vaccines, we compared replication-competent (RC), first-generation (FG) and HD vectors for their ability to induce immune responses in mice. We show that RC-Ad5 and HD-Ad5 vectors generate stronger immune responses than FG-Ad5 vectors. HD-Ad5 vectors gave lower side effects than RC or FG-Ad, producing lower levels of tissue damage and anti-Ad T cell responses. Also, HD vectors have the benefit of being packaged by all subgroup C serotype helper viruses. We found that HD serotypes 1, 2, 5, and 6 induce anti-HIV responses equivalently. By using these HD serotypes in heterologous succession we showed that HD vectors can be used to significantly boost anti-HIV immune responses in mice and in FG-Ad5-immune macaques. Since HD vectors have been show to have an increased safety profile, do not possess any Ad genes, can be packaged by multiple serotype helper viruses, and elicit strong anti-HIV immune responses, they warrant further investigation as alternatives to FG vectors as gene-based vaccines
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Gas flows, star formation and galaxy evolution
In the first part of this article we show how observations of the chemical
evolution of the Galaxy: G- and K-dwarf numbers as functions of metallicity,
and abundances of the light elements, D, Li, Be and B, in both stars and the
interstellar medium (ISM), lead to the conclusion that metal poor HI gas has
been accreting to the Galactic disc during the whole of its lifetime, and is
accreting today at a measurable rate, ~2 Msun per year across the full disc.
Estimates of the local star formation rate (SFR) using methods based on stellar
activity, support this picture. The best fits to all these data are for models
where the accretion rate is constant, or slowly rising with epoch. We explain
here how this conclusion, for a galaxy in a small bound group, is not in
conflict with graphs such as the Madau plot, which show that the universal SFR
has declined steadily from z=1 to the present day. We also show that a model in
which disc galaxies in general evolve by accreting major clouds of low
metallicity gas from their surroundings can explain many observations, notably
that the SFR for whole galaxies tends to show obvious variability, and
fractionally more for early than for late types, and yields lower dark to
baryonic matter ratios for large disc galaxies than for dwarfs. In the second
part of the article we use NGC 1530 as a template object, showing from
Fabry-Perot observations of its Halpha emission how strong shear in this
strongly barred galaxy acts to inhibit star formation, while compression acts
to stimulate it.Comment: 20 pages, 10 figures, to be presented at the "Penetrating Bars
through Masks of Cosmic Dust" conference in South Africa, proceedings
published by Kluwer, Eds. D.L. Block, K.C. Freeman, I. Puerari, & R. Groes
Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas
Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …