26,063 research outputs found

    A Theoretical Growth Model for Ireland

    Get PDF
    Ireland is distinguished by the high degree of openness of its labour market and the importance of foreign direct investment (FDI) in the economy. We develop a neo-classical growth model to explore the consequence of these characteristics for the response of an economy to the kinds of shocks that are widely recognised to have been of importance in driving the Irish boom.

    Neutrino Physics

    Get PDF
    The basic concepts of neutrino physics are presented at a level appropriate for integration into elementary courses on quantum mechanics and/or modern physics.Comment: Prepared for the American Journal of Physics; 50 pages; 11 figures (10 included); late

    The Nature of Solar Polar Rays

    Get PDF
    We use time series observations from the SOHO and Yohkoh spacecraft to study solar polar rays. Contrary to our expectations, we find that the rays are associated with active regions on the sun and are not features of the polar coronal holes. They are extended, hot plasma structures formed in the active regions and projected onto the plane of the sky above the polar coronal holes. We present new observations and simple projection models that match long-lived polar ray structures seen in limb synoptic maps. Individual projection patterns last for at least 5 solar rotations.Comment: 10 pages, 5 PostScript figures. Fig.1 is in color. The paper is also available at http://www.ifa.hawaii.edu/users/jing/papers.htm

    Formulation and optimization of the energy-based blended quasicontinuum method

    Get PDF
    We formulate an energy-based atomistic-to-continuum coupling method based on blending the quasicontinuum method for the simulation of crystal defects. We utilize theoretical results from Van Koten and Luskin [32] and Ortner and Van Koten [24] to derive optimal choices of approximation parameters (blending function and finite element grid) for microcrack and di-vacancy test problems and confirm our analytical predictions in numerical tests

    Collection and analysis of radar rainfall and satellite data for the Darwin TRMM experiment

    Get PDF
    The following subject areas are covered: video cloud camera (purpose, design, operation, data); special observing periods (SOP-2, SOP 2.5 - an extension of SOP-2); Garand algorithm; and warm rain

    The 1999 Heineman Prize Address- Integrable models in statistical mechanics: The hidden field with unsolved problems

    Full text link
    In the past 30 years there have been extensive discoveries in the theory of integrable statistical mechanical models including the discovery of non-linear differential equations for Ising model correlation functions, the theory of random impurities, level crossing transitions in the chiral Potts model and the use of Rogers-Ramanujan identities to generalize our concepts of Bose/Fermi statistics. Each of these advances has led to the further discovery of major unsolved problems of great mathematical and physical interest. I will here discuss the mathematical advances, the physical insights and extraordinary lack of visibility of this field of physics.Comment: Text of the 1999 Heineman Prize address given March 24 at the Centenial Meeting of the American Physical Society in Atlanta 20 pages in latex, references added and typos correcte

    A statistical framework for testing functional categories in microarray data

    Get PDF
    Ready access to emerging databases of gene annotation and functional pathways has shifted assessments of differential expression in DNA microarray studies from single genes to groups of genes with shared biological function. This paper takes a critical look at existing methods for assessing the differential expression of a group of genes (functional category), and provides some suggestions for improved performance. We begin by presenting a general framework, in which the set of genes in a functional category is compared to the complementary set of genes on the array. The framework includes tests for overrepresentation of a category within a list of significant genes, and methods that consider continuous measures of differential expression. Existing tests are divided into two classes. Class 1 tests assume gene-specific measures of differential expression are independent, despite overwhelming evidence of positive correlation. Analytic and simulated results are presented that demonstrate Class 1 tests are strongly anti-conservative in practice. Class 2 tests account for gene correlation, typically through array permutation that by construction has proper Type I error control for the induced null. However, both Class 1 and Class 2 tests use a null hypothesis that all genes have the same degree of differential expression. We introduce a more sensible and general (Class 3) null under which the profile of differential expression is the same within the category and complement. Under this broader null, Class 2 tests are shown to be conservative. We propose standard bootstrap methods for testing against the Class 3 null and demonstrate they provide valid Type I error control and more power than array permutation in simulated datasets and real microarray experiments.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS146 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Conversation with Monroe Sirken

    Full text link
    Born January 11, 1921 in New York City, Monroe Sirken grew up in a suburb of Pasadena, California. He earned B.A. and M.A. degrees in sociology at UCLA in 1946 and 1947, and a Ph.D. in 1950 in sociology with a minor in mathematics at the University of Washington in 1950 where Professor Z. W. Birnbaum was his mentor and thesis advisor. As a Post-Doctoral Fellow of the Social Science Research Council, Monroe spent 1950--1951 at the Statistics Laboratory, University of California at Berkeley and the Office of the Assistant Director for Research, U.S. Bureau of the Census in Suitland, Maryland. Monroe visited the Census Bureau at a time of great change in the use of sampling and survey methods, and decided to remain. He began his government career there in 1951 as a mathematical statistician, and moved to the National Office of Vital Statistics (NOVS) in 1953 where he was an actuarial mathematician and a mathematical statistician. He has held a variety of research and administrative positions at the National Center for Health Statistics (NCHS) and he was the Associate Director, Research and Methodology and the Director, Office of Research and Methodology until 1996 when he became a senior research scientist, the title he currently holds. Aside from administrative responsibilities, Monroe's major professional interests have been conducting and fostering survey and statistical research responsive to the needs of federal statistics. His interest in the design of rare and sensitive population surveys led to the development of network sampling which improves precision by linking multiple selection units to the same observation units. His interest in fostering research on the cognitive aspects of survey methods led to the establishment of permanent questionnaire design research laboratories, first at NCHS and later at other federal statistical agencies here and abroad.Comment: Published in at http://dx.doi.org/10.1214/07-STS245 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Disconnected Elementary Band Representations, Fragile Topology, and Wilson Loops as Topological Indices: An Example on the Triangular Lattice

    Full text link
    In this work, we examine the topological phases that can arise in triangular lattices with disconnected elementary band representations. We show that, although these phases may be "fragile" with respect to the addition of extra bands, their topological properties are manifest in certain nontrivial holonomies (Wilson loops) in the space of nontrivial bands. We introduce an eigenvalue index for fragile topology, and we show how a nontrivial value of this index manifests as the winding of a hexagonal Wilson loop; this remains true even in the absence of time-reversal or sixfold rotational symmetry. Additionally, when time-reversal and twofold rotational symmetry are present, we show directly that there is a protected nontrivial winding in more conventional Wilson loops. Crucially, we emphasize that these Wilson loops cannot change without closing a gap to the nontrivial bands. By studying the entanglement spectrum for the fragile bands, we comment on the relationship between fragile topology and the "obstructed atomic limit" of B. Bradlyn et al., Nature 547, 298--305 (2017). We conclude with some perspectives on topological matter beyond the K-theory classification.Comment: 13 pages, 10 figures v2. accepted versio
    • 

    corecore