9,652 research outputs found

    A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy

    Full text link
    We propose a new, more realistic, description of the perturbed gravitational potential of spiral galaxies, with spiral arms having Gaussian-shaped groove profiles. We investigate the stable stellar orbits in galactic disks, using the new perturbed potential. The influence of the bulge mass on the stellar orbits in the inner regions of a disk is also investigated. The new description offers the advantage of easy control of the parameters of the Gaussian profile of its potential. We find a range of values for the perturbation amplitude from 400 to 800 km^2 s^{-2} kpc^{-1} which implies a maximum ratio of the tangential force to the axisymmetric force between 3% and 6%, approximately. Good self-consistency of arm shapes is obtained between the Inner Lindblad resonance (ILR) and the 4:1 resonance. Near the 4:1 resonance the response density starts to deviate from the imposed logarithmic spiral form. This creates bifurcations that appear as short arms. Therefore the deviation from a perfect logarithmic spiral in galaxies can be understood as a natural effect of the 4:1 resonance. Beyond the 4:1 resonance we find closed orbits which have similarities with the arms observed in our Galaxy. In regions near the center, in the presence of a massive bulge, elongated stellar orbits appear naturally, without imposing any bar-shaped potential, but only extending the spiral perturbation a little inward of the ILR. This suggests that a bar is formed with a half-size around 3 kpc by a mechanism similar to that of the spiral arms. The potential energy perturbation that we adopted represents an important step in the direction of self-consistency, compared to previous sine function descriptions of the potential. Our model produces a realistic description of the spiral structure, able to explain several details that were not yet understood.Comment: 12 pag., 11 fig. Accepted for publication in A&A, 2012 December 1

    Light clusters and the pasta phase

    Full text link
    The effects of including light clusters in nuclear matter at low densities are investigated within four different parametrizations of relativistic models at finite temperature. Both homogeneous and inhomogeneous matter (pasta phase) are described for neutral nuclear matter with fixed proton fractions. We discuss the effect of the density dependence of the symmetry energy, the temperature and the proton fraction on the non-homogeneous matter forming the inner crust of proto-neutron stars. It is shown that the number of nucleons in the clusters, the cluster proton fraction and the sizes of the Wigner Seitz cell and of the cluster are very sensitive to the density dependence of the symmetry energy.Comment: 14 pages, 14 figures; Accepted for publication in Phys. Rev.

    Novel magnetic orderings in the kagome Kondo-lattice model

    Get PDF
    We consider the Kondo-lattice model on the kagome lattice and study its weak-coupling instabilities at band filling fractions for which the Fermi surface has singularities. These singularites include Dirac points, quadratic Fermi points in contact with a flat band, and Van Hove saddle points. By combining a controlled analytical approach with large-scale numerical simulations, we demonstrate that the weak-coupling instabilities of the Kondo-lattice model lead to exotic magnetic orderings. In particular, some of these magnetic orderings produce a spontaneous quantum anomalous Hall state.Comment: 15 pages, 11 figure

    Bimodal chemical evolution of the Galactic disk and the Barium abundance of Cepheids

    Full text link
    In order to understand the Barium abundance distribution in the Galactic disk based on Cepheids, one must first be aware of important effects of the corotation resonance, situated a little beyond the solar orbit. The thin disk of the Galaxy is divided in two regions that are separated by a barrier situated at that radius. Since the gas cannot get across that barrier, the chemical evolution is independent on the two sides of it. The barrier is caused by the opposite directions of flows of gas, on the two sides, in addition to a Cassini-like ring void of HI (caused itself by the flows). A step in the metallicity gradient developed at corotation, due to the difference in the average star formation rate on the two sides, and to this lack of communication between them. In connection with this, a proof that the spiral arms of our Galaxy are long-lived (a few billion years) is the existence of this step. When one studies the abundance gradients by means of stars which span a range of ages, like the Cepheids, one has to take into account that stars, contrary to the gas, have the possibility of crossing the corotation barrier. A few stars born on the high metallicity side are seen on the low metallicity one, and vice-versa. In the present work we re-discuss the data on Barium abundance in Cepheids as a function of Galactic radius, taking into account the scenario described above. The [Ba/H] ratio, plotted as a function of Galactic radius, apparently presents a distribution with two branches in the external region (beyond corotation). One can re-interpret the data and attribute the upper branch to the stars that were born on the high metallicity side. The lower branch, analyzed separately, indicates that the stars born beyond corotation have a rising Barium metallicity as a function of Galactic radius.Comment: 6 pages, 7 figures, Proceedings of IAU Symposium 29

    Planets and Stellar Activity: Hide and Seek in the CoRoT-7 system

    Get PDF
    Since the discovery of the transiting super-Earth CoRoT-7b, several investigations have yielded different results for the number and masses of planets present in the system, mainly owing to the star's high level of activity. We re-observed CoRoT-7 in January 2012 with both HARPS and CoRoT, so that we now have the benefit of simultaneous radial-velocity and photometric data. This allows us to use the off-transit variations in the star's light curve to estimate the radial-velocity variations induced by the suppression of convective blueshift and the flux blocked by starspots. To account for activity-related effects in the radial-velocities which do not have a photometric signature, we also include an additional activity term in the radial-velocity model, which we treat as a Gaussian process with the same covariance properties (and hence the same frequency structure) as the light curve. Our model was incorporated into a Monte Carlo Markov Chain in order to make a precise determination of the orbits of CoRoT-7b and CoRoT-7c. We measure the masses of planets b and c to be 4.73 +/- 0.95 Mearth and 13.56 +/- 1.08 Mearth, respectively. The density of CoRoT-7b is (6.61 +/- 1.72)(Rp/1.58 Rearth)^(-3) g.cm^(-3), which is compatible with a rocky composition. We search for evidence of an additional planet d, identified by previous authors with a period close to 9 days. We are not able to confirm the existence of a planet with this orbital period, which is close to the second harmonic of the stellar rotation at around 7.9 days. Using Bayesian model selection we find that a model with two planets plus activity-induced variations is most favoured.Comment: Accepted 2014 July 2. Received 2014 June 30; in original form 2013 May 30 (17 pages, 9 figures

    Global aspects of gravitomagnetism

    Full text link
    We consider global properties of gravitomagnetism by investigating the gravitomagnetic field of a rotating cosmic string. We show that although the gravitomagnetic field produced by such a configuration of matter vanishes locally, it can be detected globally. In this context we discuss the gravitational analogue of the Aharonov-Bohm effect.Comment: 10 pages - Typeset using REVTE

    Water-like hierarchy of anomalies in a continuous spherical shouldered potential

    Get PDF
    We investigate by molecular dynamics simulations a continuous isotropic core-softened potential with attractive well in three dimensions, introduced by Franzese [cond-mat/0703681, to appear on Journal of Molecular Liquids], that displays liquid-liquid coexistence with a critical point and water-like density anomaly. Here we find diffusion and structural anomalies. These anomalies occur with the same hierarchy that characterizes water. Yet our analysis shows differences with respect to the water case. Therefore, many of the anomalous features of water could be present in isotropic systems with soft-core attractive potentials, such as colloids or liquid metals, consistent with recent experiments showing polyamorphism in metallic glasses.Comment: 27 pages, 9 figures. to appear in J. Chem. Phy
    corecore