438 research outputs found

    Metabolomics Identifies multiple candidate biomarkers to diagnose and stage human African trypanosomiasis

    Get PDF
    Treatment for human African trypanosomiasis is dependent on the species of trypanosome causing the disease and the stage of the disease (stage 1 defined by parasites being present in blood and lymphatics whilst for stage 2, parasites are found beyond the blood-brain barrier in the cerebrospinal fluid (CSF)). Currently, staging relies upon detecting the very low number of parasites or elevated white blood cell numbers in CSF. Improved staging is desirable, as is the elimination of the need for lumbar puncture. Here we use metabolomics to probe samples of CSF, plasma and urine from 40 Angolan patients infected with Trypanosoma brucei gambiense, at different disease stages. Urine samples provided no robust markers indicative of infection or stage of infection due to inherent variability in urine concentrations. Biomarkers in CSF were able to distinguish patients at stage 1 or advanced stage 2 with absolute specificity. Eleven metabolites clearly distinguished the stage in most patients and two of these (neopterin and 5-hydroxytryptophan) showed 100% specificity and sensitivity between our stage 1 and advanced stage 2 samples. Neopterin is an inflammatory biomarker previously shown in CSF of stage 2 but not stage 1 patients. 5-hydroxytryptophan is an important metabolite in the serotonin synthetic pathway, the key pathway in determining somnolence, thus offering a possible link to the eponymous symptoms of “sleeping sickness”. Plasma also yielded several biomarkers clearly indicative of the presence (87% sensitivity and 95% specificity) and stage of disease (92% sensitivity and 81% specificity). A logistic regression model including these metabolites showed clear separation of patients being either at stage 1 or advanced stage 2 or indeed diseased (both stages) versus control

    Systematic literature review assessing tobacco smoke exposure as a risk factor for serious respiratory syncytial virus disease among infants and young children

    Get PDF
    BACKGROUND: The role of environmental tobacco smoke (ETS) exposure as a risk factor for serious respiratory syncytial virus (RSV) disease among infants and young children has not been clearly established. This systematic review was conducted to explore the association between ETS exposure and serious RSV disease in children younger than 5 years, including infants and young children with elevated risk for serious RSV disease. METHODS: A systematic review of English-language studies using the PubMed and EMBASE databases (1990-2009) was performed to retrieve studies that evaluated ETS as a potential risk factor for serious RSV illness. Studies assessing risk factors associated with hospitalization, emergency department visit, or physician visit due to RSV (based on laboratory confirmation of RSV or clinical diagnosis of RSV) in children under the age of 5 years were included. RESULTS: The literature search identified 30 relevant articles, categorized by laboratory confirmation of RSV infection (n = 14), clinical diagnosis of RSV disease (n = 8), and assessment of RSV disease severity (n = 8). Across these three categories of studies, at least 1 type of ETS exposure was associated with statistically significant increases in risk in multivariate or bivariate analysis, as follows: 12 of 14 studies on risk of hospitalization or ED visit for laboratory-confirmed RSV infection; 6 of 8 studies of RSV disease based on clinical diagnosis; and 5 of the 8 studies assessing severity of RSV as shown by hospitalization rates or degree of hypoxia. Also, 7 of the 30 studies focused on populations of premature infants, and the majority (5 studies) found a significant association between ETS exposure and RSV risk in the multivariate or bivariate analyses. CONCLUSION: We found ample evidence that ETS exposure places infants and young children at increased risk of hospitalization for RSV-attributable lower respiratory tract infection and increases the severity of illness among hospitalized children. Additional evidence is needed regarding the association of ETS exposure and outpatient RSV lower respiratory tract illness. Challenges and potential pitfalls of assessing ETS exposure in children are discussed

    Learning about tools in infancy

    Get PDF
    These experiments explored the role of prior experience in 12-to 18-month-old infants' tool-directed actions. In Experiment 1, infants' use of a familiar tool (spoon) to accomplish a novel task (turning on lights inside a box) was examined. Infants tended to grasp the spoon by its handle even when doing so made solving the task impossible (the bowl did not fit through the hole in the box, but the handle did) and even though the experimenter demonstrated a bowl-grasp. In contrast, infants used a novel tool flexibly and grasped both sides equally often. In Experiment 2, infants received training using the novel tool for a particular function; 3 groups of infants were trained to use the tool differently. Later, infants' performance was facilitated on tasks that required infants to grasp the part of the tool they were trained to grasp. The results suggest that (a) infants' prior experiences with tools are important to understanding subsequent tool use, and (b) rather than learning about tool function (e.g., hammering), infants learn about which part of the tool is meant to be held, at least early in their exposure to a novel tool

    Variability of gene expression profiles in human blood and lymphoblastoid cell lines

    Get PDF
    BACKGROUND: Readily accessible samples such as peripheral blood or cell lines are increasingly being used in large cohorts to characterise gene expression differences between a patient group and healthy controls. However, cell and RNA isolation procedures and the variety of cell types that make up whole blood can affect gene expression measurements. We therefore systematically investigated global gene expression profiles in peripheral blood from six individuals collected during two visits by comparing five of the following cell and RNA isolation methods: whole blood (PAXgene), peripheral blood mononuclear cells (PBMCs), lymphoblastoid cell lines (LCLs), CD19 and CD20 specific B-cell subsets. RESULTS: Gene expression measurements were clearly discriminated by isolation method although the reproducibility was high for all methods (range rho = 0.90-1.00). The PAXgene samples showed a decrease in the number of expressed genes (P < 1*10(-16)) with higher variability (P < 1*10(-16)) compared to the other methods. Differentially expressed probes between PAXgene and PBMCs were correlated with the number of monocytes, lymphocytes, neutrophils or erythrocytes. The correlations (rho = 0.83; rho = 0.79) of the expression levels of detected probes between LCLs and B-cell subsets were much lower compared to the two B-cell isolation methods (rho = 0.98). Gene ontology analysis of detected genes showed that genes involved in inflammatory responses are enriched in B-cells CD19 and CD20 whereas genes involved in alcohol metabolic process and the cell cycle were enriched in LCLs. CONCLUSION: Gene expression profiles in blood-based samples are strongly dependent on the predominant constituent cell type(s) and RNA isolation method. It is crucial to understand the differences and variability of gene expression measurements between cell and RNA isolation procedures, and their relevance to disease processes, before application in large clinical studies

    Variance decomposition of protein profiles from antibody arrays using a longitudinal twin model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The advent of affinity-based proteomics technologies for global protein profiling provides the prospect of finding new molecular biomarkers for common, multifactorial disorders. The molecular phenotypes obtained from studies on such platforms are driven by multiple sources, including genetic, environmental, and experimental components. In characterizing the contribution of different sources of variation to the measured phenotypes, the aim is to facilitate the design and interpretation of future biomedical studies employing exploratory and multiplexed technologies. Thus, biometrical genetic modelling of twin or other family data can be used to decompose the variation underlying a phenotype into biological and experimental components.</p> <p>Results</p> <p>Using antibody suspension bead arrays and antibodies from the Human Protein Atlas, we study unfractionated serum from a longitudinal study on 154 twins. In this study, we provide a detailed description of how the variation in a molecular phenotype in terms of protein profile can be decomposed into familial i.e. genetic and common environmental; individual environmental, short-term biological and experimental components. The results show that across 69 antibodies analyzed in the study, the median proportion of the total variation explained by familial sources is 12% (IQR 1-22%), and the median proportion of the total variation attributable to experimental sources is 63% (IQR 53-72%).</p> <p>Conclusion</p> <p>The variability analysis of antibody arrays highlights the importance to consider variability components and their relative contributions when designing and evaluating studies for biomarker discoveries with exploratory, high-throughput and multiplexed methods.</p

    100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world

    Get PDF
    Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5-23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes

    Perlecan, a candidate gene for the CAPB locus, regulates prostate cancer cell growth via the Sonic Hedgehog pathway

    Get PDF
    BACKGROUND: Genetic studies associated the CAPB locus with familial risk of brain and prostate cancers. We have identified HSPG2 (Perlecan) as a candidate gene for CAPB. Previously we have linked Perlecan to Hedgehog signaling in Drosophila. More recently, we have demonstrated the importance of Hedgehog signaling in humans for advanced prostate cancer. RESULTS: Here we demonstrate Perlecan expression in prostate cancer, and its function in prostate cancer cell growth through interaction and modulation of Sonic Hedgehog (SHH) signaling. Perlecan expression in prostate cancer tissues correlates with a high Gleason score and rapid cell proliferation. Perlecan is highly expressed in prostate cancer cell lines, including androgen insensitive cell lines and cell lines selected for metastatic properties. Inhibition of Perlecan expression in these cell lines decreases cell growth. Simultaneous blockade of Perlecan expression and androgen signaling in the androgen-sensitive cell line LNCaP was additive, indicating the independence of these two pathways. Perlecan expression correlates with SHH in tumor tissue microarrays and increased tumor cell proliferation based on Ki-67 immunohistochemistry. Inhibition of Perlecan expression by siRNA in prostate cancer cell lines decreases SHH signaling while expression of the downstream SHH effector GLI1 rescues the proliferation defect. Perlecan forms complexes with increasing amounts of SHH that correlate with increasing metastatic potential of the prostate cancer cell line. SHH signaling also increases in the more metastatic cell lines. Metastatic prostate cancer cell lines grown under serum-starved conditions (low androgen and growth factors) resulted in maintenance of Perlecan expression. Under low androgen, low growth factor conditions, Perlecan expression level correlates with the ability of the cells to maintain SHH signaling. CONCLUSION: We have demonstrated that Perlecan, a candidate gene for the CAPB locus, is a new component of the SHH pathway in prostate tumors and works independently of androgen signaling. In metastatic tumor cells increased SHH signaling correlates with the maintenance of Perlecan expression and more Perlecan-SHH complexes. Perlecan is a proteoglycan that regulates extracellular and stromal accessibility to growth factors such as SHH, thus allowing for the maintenance of SHH signaling under growth factor limiting conditions. This proteoglycan represents an important central regulator of SHH activity and presents an ideal drug target for blocking SHH effects

    The Perceived Usability of Virtual Visits Among Black Adults\u27 Receiving Oncology Care: A Qualitative Analysis

    Get PDF
    BACKGROUND: With the COVID-19 pandemic came rapid uptake in virtual oncology care. During this, sociodemographic inequities in access to virtual visits (VVs) have become apparent. To better understand these issues, we conducted a qualitative study to describe the perceived usability and acceptability of VVs among Black adults diagnosed with cancer. METHODS: Adults who self-identified as Black and had a diagnosis of prostate, multiple myeloma, or head and neck cancer were recruited from 2 academic medical centers, and their community affiliates to participate in a semi-structured interview, regardless of prior VV experience. A patient and family advisory board was formed to inform all components of the study. Interviews were conducted between September 2, 2021 and February 23, 2022. Transcripts were organized topically, and themes and subthemes were determined through iterative and interpretive immersion/crystallization cycles. RESULTS: Of the 49 adults interviewed, 29 (59%) had participated in at least one VV. Three overarching themes were derived: (1) VVs felt comfortable and convenient in the right contexts; (2) the technology required for VVs with video presented new challenges, which were often resolved by an audio-only telephone call; and (3) participants reported preferring in-person visits, citing concerns regarding gaps in nonverbal communication, trusting providers, and distractions during VV. CONCLUSION: While VVs were reported to be acceptable in specific circumstances, Black adults reported preferring in-person care, in part due to a perceived lack of interpersonal connectedness. Nonetheless, retaining reimbursement for audio-only options for VVs is essential to ensure equitable access for those with less technology savvy and/or limited device/internet capabilities

    Novel associations for hypothyroidism include known autoimmune risk loci

    Get PDF
    Hypothyroidism is the most common thyroid disorder, affecting about 5% of the general population. Here we present the first large genome-wide association study of hypothyroidism, in 2,564 cases and 24,448 controls from the customer base of 23andMe, Inc., a personal genetics company. We identify four genome-wide significant associations, two of which are well known to be involved with a large spectrum of autoimmune diseases: rs6679677 near _PTPN22_ and rs3184504 in _SH2B3_ (p-values 3.5e-13 and 3.0e-11, respectively). We also report associations with rs4915077 near _VAV3_ (p-value 8.3e-11), another gene involved in immune function, and rs965513 near _FOXE1_ (p-value 3.1e-14). Of these, the association with _PTPN22_ confirms a recent small candidate gene study, and _FOXE1_ was previously known to be associated with thyroid-stimulating hormone (TSH) levels. Although _SH2B3_ has been previously linked with a number of autoimmune diseases, this is the first report of its association with thyroid disease. The _VAV3_ association is novel. These results suggest heterogeneity in the genetic etiology of hypothyroidism, implicating genes involved in both autoimmune disorders and thyroid function. Using a genetic risk profile score based on the top association from each of the four genome-wide significant regions in our study, the relative risk between the highest and lowest deciles of genetic risk is 2.1
    corecore