8,586 research outputs found
Observation of the Meissner effect with ultracold atoms in bosonic ladders
We report on the observation of the Meissner effect in bosonic flux ladders
of ultracold atoms. Using artificial gauge fields induced by laser-assisted
tunneling, we realize arrays of decoupled ladder systems that are exposed to a
uniform magnetic field. By suddenly decoupling the ladders and projecting into
isolated double wells, we are able to measure the currents on each side of the
ladder. For large coupling strengths along the rungs of the ladder, we find a
saturated maximum chiral current corresponding to a full screening of the
artificial magnetic field. For lower coupling strengths, the chiral current
decreases in good agreement with expectations of a vortex lattice phase. Our
work marks the first realization of a low-dimensional Meissner effect and,
furthermore, it opens the path to exploring interacting particles in low
dimensions exposed to a uniform magnetic field
WMAP Constraints on a Quintessence Model
We use the results from the Wilkinson Microwave Anisotropy Probe (WMAP) for
the locations of peaks and troughs of the Cosmic Microwave Background (CMB)
power spectrum, together with constraints from large-scale structure, to study
a quintessence model in which the pure exponential potential is modified by a
polynomial factor. Our analysis, in the cosmological
parameters space shows that this quintessence model is favoured compared to
CDM for and relatively high values of early
quintessence; for , quintessence and CDM give similar results,
except for high values of early quintessence, in which case CDM is
favoured.Comment: 3 pages. Talk presented by N. M. C. Santos at the Tenth Marcel
Grossmann Meeting on General Relativity, Rio de Janeiro, July 200
A Bayesian approach to filter design: detection of compact sources
We consider filters for the detection and extraction of compact sources on a
background. We make a one-dimensional treatment (though a generalization to two
or more dimensions is possible) assuming that the sources have a Gaussian
profile whereas the background is modeled by an homogeneous and isotropic
Gaussian random field, characterized by a scale-free power spectrum. Local peak
detection is used after filtering. Then, a Bayesian Generalized Neyman-Pearson
test is used to define the region of acceptance that includes not only the
amplification but also the curvature of the sources and the a priori
probability distribution function of the sources. We search for an optimal
filter between a family of Matched-type filters (MTF) modifying the filtering
scale such that it gives the maximum number of real detections once fixed the
number density of spurious sources. We have performed numerical simulations to
test theoretical ideas.Comment: 10 pages, 2 figures. SPIE Proceedings "Electronic Imaging II", San
Jose, CA. January 200
Hyperentanglement-enabled Direct Characterization of Quantum Dynamics
We use hyperentangled photons to experimentally implement an
entanglement-assisted quantum process tomography technique known as Direct
Characterization of Quantum Dynamics. Specifically, hyperentanglement-assisted
Bell-state analysis enabled us to characterize a variety of single-qubit
quantum processes using far fewer experimental configurations than are required
by Standard Quantum Process Tomography (SQPT). Furthermore, we demonstrate how
known errors in Bell-state measurement may be compensated for in the data
analysis. Using these techniques, we have obtained single-qubit process
fidelities as high as 98.2% but with one-third the number experimental
configurations required for SQPT. Extensions of these techniques to multi-qubit
quantum processes are discussed.Comment: This is part of a joint submission with an implementation with Ions:
"Experimental characterization of quantum dynamics through many-body
interactions" by Daniel Nigg, Julio T. Barreiro, Philipp Schindler, Masoud
Mohseni, Thomas Monz, Michael Chwalla, Markus Hennrich and Rainer Blat
Protectionist Responses to the Crisis: Global Trends and Implications
In this paper we take a systematic look at recent trends in global protectionism and at the potential implications of a protectionist backlash for economic growth, using results from the recent economic literature and new model simulations. We find that there has so far been a moderate increase in actual protectionist measures to restrict trade through tariff and non-tariff barriers. At the same time, evidence from surveys shows that public pressure for more economic protection has been mounting since the mid-2000s, and has possibly intensified since the start of the financial crisis. However, no World Trade Organization (WTO) member has retreated into widespread trade restrictions or protectionism to date. Our model-based simulations suggest that the impairment of the global flow of trade would hamper the recovery from the crisis, as well as the long-term growth of the global economy. At the same time, it is unlikely that protectionism would help to correct existing current account imbalances. Moreover, the countries implementing protectionist measures should expect a deterioration of their international competitiveness, which would further affect the potential for longer-term real GDP growth.Protectionism ; trade ; financial crisis ; competitiveness ; World Trade Organization ; global imbalances.
- …