31 research outputs found
Streamlining T cell engager development with a diverse panel of fully human CD3-binding antibodies, bispecific engineering technology, and an integrated discovery engine
Please click Additional Files below to see the full abstract
From nanoliter to large-scale bioreactors: How integrated technologies bring antibody treatments to patients faster
Please click Additional Files below to see the full abstract
c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis
Activation of the caspase cascade is a pivotal step in apoptosis and can occur via death adaptor-mediated homo-oligomerization of initiator procaspases. Here we show that c-FLIP(L), a protease-deficient caspase homolog widely regarded as an apoptosis inhibitor, is enriched in the CD95 death-inducing signaling complex (DISC) and potently promotes procaspase-8 activation through hetero-dimerization. c-FLIP(L) exerts its effect through its protease-like domain, which associates efficiently with the procaspase-8 protease domain and induces the enzymatic activity of the zymogen. Ectopic expression of c-FLIP(L) at physiologically relevant levels enhances procaspase-8 processing in the CD95 DISC and promotes apoptosis, while a decrease of c-FLIP(L) expression results in inhibition of apoptosis. c-FLIP(L) acts as an apoptosis inhibitor only at high ectopic expression levels. Thus, c-FLIP(L) defines a novel type of caspase regulator, distinct from the death adaptors, that can either promote or inhibit apoptosis
Induction of apoptosis and activation of NF-κB by CD95 require different signalling thresholds
Mutations in the death domain of the death receptor CD95 (APO-1/Fas) cause lymphoproliferation and autoimmune disease in both lpr(cg) mice and in patients with autoimmune lymphoproliferative syndrome (ALPS) type Ia. By testing lymphocytes from ALPS type Ia patients, comparing heterozygous with homozygous lpr(cg) mice and coexpressing wild-type and mutant CD95 receptors, we demonstrate that induction of apoptosis requires two wild-type alleles of CD95. By contrast, nuclear factor-κB (NF-κB) can be fully activated in cells expressing both a mutant and a wild-type CD95 allele, suggesting different thresholds to activate the two signalling pathways. This was confirmed by testing lymphocytes from heterozygous lpr mice, which showed reduced sensitivity to CD95-mediated apoptosis but normal activation of NF-κB when compared with wild-type mice. Mutations in CD95 may eliminate the tumour-suppressive function of CD95, at the same time allowing induction of survival or proliferative pathways, which could contribute to the increased risk for lymphoma seen in ALPS type Ia patients
CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells
The apoptosis-inducing death receptor CD95 (APO-1/Fas) controls the homeostasis of many tissues. Despite its apoptotic potential, most human tumors are refractory to the cytotoxic effects of CD95 ligand. We now show that CD95 stimulation of multiple apoptosis-resistant tumor cells by CD95 ligand induces increased motility and invasiveness, a response much less efficiently triggered by TNFα or TRAIL. Three signaling pathways resulting in activation of NF-κB, Erk1/2 and caspase-8 were found to be important to this novel activity of CD95. Gene chip analyses of a CD95-stimulated tumor cell line identified a number of potential survival genes and genes that are known to regulate increased motility and invasiveness of tumor cells to be induced. Among these genes, urokinase plasminogen activator was found to be required for the CD95 ligand-induced motility and invasiveness. Our data suggest that CD95L, which is found elevated in many human cancer patients, has tumorigenic activities on human cancer cells. This could become highly relevant during chemotherapy, which can cause upregulation of CD95 ligand by both tumor and nontumor cells