51 research outputs found

    Spin-dependent thermoelectric effects in transport through a nanoscopic junction involving spin impurity

    Get PDF
    Conventional and spin-related thermoelectric effects in transport through a magnetic tunnel junction with a large-spin impurity, such as a magnetic molecule or atom, embedded into the corresponding barrier are studied theoretically in the linear-response regime. The impurity is described by the giant spin Hamiltonian, with both uniaxial and transverse magnetic anisotropy taken into account. Owing to the presence of transverse component of magnetic anisotropy, spin of a tunneling electron can be reversed during scattering on the impurity, even in the low temperature regime. This reversal appears due to exchange interaction of tunneling electrons with the magnetic impurity. We calculate Seebeck and spin Seebeck coefficients, and analyze their dependence on various parameters of the spin impurity and tunnel junction. In addition, conventional and spin figures of merit, as well as the electronic contribution to heat conductance are considered. We also show that pure spin current can be driven by a spin bias applied to the junction with spin impurity, even if no electron transfer between the electrodes can take place. The underlying mechanism employs single-electrode tunneling processes (electrode-spin exchange interaction) and the impurity as an intermediate reservoir of angular momentum.Comment: 24 pages with 7 figures, version as publishe

    Effects of Transverse Magnetic Anisotropy on Current-Induced Spin Switching

    Get PDF
    Spin-polarized transport through bistable magnetic adatoms or single-molecule magnets (SMMs), which exhibit both uniaxial and transverse magnetic anisotropy, is considered theoretically. The main focus is on the impact of transverse anisotropy on transport characteristics and the adatom's/SMM's spin. In particular, we analyze the role of quantum tunneling of magnetization (QTM) in the mechanism of the current-induced spin switching, and show that the QTM phenomenon becomes revealed as resonant peaks in the average values of the molecule's spin and in the charge current. These features appear at some resonant fields and are observable when at least one of the electrodes is ferromagnetic. We also show that the conductance generally depends on the relative orientation of the average adatom's/SMM's spin and electrode's magnetic moment. This spin-valve like magnetoresistance effect can be used to control spin switching of the adatom's/SMM's spin.Comment: 5 pages, 3 figures (submitted

    Effect of magnetic anisotropy on spin-dependent thermoelectric effects in nanoscopic systems

    Get PDF
    Conventional and spin-related thermoelectric effects in electronic transport through a nanoscopic system exhibiting magnetic anisotropy -with both uniaxial and transverse components- are studied theoretically in the linear response regime. In particular, a magnetic tunnel junction with a large-spin impurity -either a magnetic atom or a magnetic molecule- embedded in the barrier is considered as an example. Owing to magnetic interaction with the impurity, conduction electrons traversing the junction can scatter on the impurity, which effectively can lead to angular momentum and energy exchange between the electrons and the impurity. As we show, such processes have a profound effect on the thermoelectric response of the system. Specifically, we present a detailed analysis of charge, spin and thermal conductance, together with the Seebeck and spin Seebeck coefficients (thermopowers). Since the scattering mechanism also involves processes when electrons are inelastically scattered back to the same electrode, one can expect the flow of spin and energy also in the absence of charge transport through the junction. This, in turn, results in a finite spin thermopower, and the magnetic anisotropy plays a key role for this effect to occur.Comment: 23 pages with 16 figures; version as publishe

    Spin Polarized Transport Through a Single-Molecule Magnet: Current-Induced Magnetic Switching

    Full text link
    Magnetic switching of a single-molecule magnet (SMM) due to spin-polarized current is investigated theoretically. The charge transfer between the electrodes takes place via the lowest unoccupied molecular orbital (LUMO) of the SMM. Generally, the double occupancy of the LUMO level, and a finite on-site Coulomb repulsion, is taken into account. Owing to the exchange interaction between electrons in the LUMO level and the SMM's spin, the latter can be reversed. The perturbation approach (Fermi golden rule) is applied to calculate current-voltage characteristics. The influence of Coulomb interactions on the switching process is also analyzed.Comment: 5 pages with 4 EPS figures; version as accepted for publication in Phys. Rev. B (more general model introduced

    Negative tunnel magnetoresistance and differential conductance in transport through double quantum dots

    Full text link
    Spin-dependent transport through two coupled single-level quantum dots weakly connected to ferromagnetic leads with collinear magnetizations is considered theoretically. Transport characteristics, including the current, linear and nonlinear conductance, and tunnel magnetoresistance are calculated using the real-time diagrammatic technique in the parallel, serial, and intermediate geometries. The effects due to virtual tunneling processes between the two dots via the leads, associated with off-diagonal coupling matrix elements, are also considered. Negative differential conductance and negative tunnel magnetoresistance have been found in the case of serial and intermediate geometries, while no such behavior has been observed for double quantum dots coupled in parallel. It is also shown that transport characteristics strongly depend on the magnitude of the off-diagonal coupling matrix elements.Comment: 12 pages, 13 figure
    corecore