33 research outputs found

    Three-dimensional tumour microenvironment reconstruction and tumour-immune interactions' analysis

    Get PDF
    Tumours arise within complex 3D microenvironments, but the routine 2D analysis of tumours often underestimates the spatial heterogeneity. In this paper, we present a methodology to reconstruct and analyse 3D tumour models from routine clinical samples allowing 3D interactions to be analysed at cellular resolution. Our workflow involves cutting thin serial sections of tumours followed by labelling of cells using markers of interest. Serial sections are then scanned, and digital multiplexed data are created for computational reconstruction. Following spectral unmixing, a registration method of the consecutive images based on a pre-alignment, a parametric and a non-parametric image registration step is applied. For the segmentation of the cells, an ellipsoidal model is proposed and for the 3D reconstruction, a cubic interpolation method is used. The proposed 3D models allow us to identify specific interaction patterns that emerge as tumours develop, adapt and evolve within their host microenvironment. We applied our technique to map tumour-immune interactions of colorectal cancer and preliminary results suggest that 3D models better represent the tumor-immune cells interaction revealing mechanisms within the tumour microenvironment and its heterogeneity

    Gland segmentation in gastric histology images: detection of intestinal metaplasia

    Get PDF
    Gastric cancer is one of the most frequent causes of cancer-related deaths worldwide. Gastric intestinal metaplasia (IM) of the mucosa of the stomach has been found to increase the risk of gastric cancer and is considered as one of the precancerous lesions. Therefore, early detection of IM may have a valuable role in histopathological risk assessment regarding the possibility of progression to cancer. Accurate segmentation and analysis of gastric glands from the histological images plays an important role in the diagnostic confirmation of IM. Thus, in this paper, we propose a framework for segmentation of gastric glands and detection of IM. More specifically, we propose the GAGL-Net for the segmentation of glands. Then, based on two features of the extracted glands we classify the tissues into normal and IM cases. The results showed that the proposed gland segmentation approach achieves an F1 score equal to 0.914. Furthermore, the proposed methodology shows great potential for the IM detection achieving an accuracy score equal to 96.6%. To evaluate the efficiency of the proposed methodology we used a publicly available dataset and we created the GAGL dataset consisting of 59 Whole Slide Images (WSI) including both IM and normal cases

    Tertiary lymphoid structures (TLS) identification and density assessment on H&E-stained digital slides of lung cancer

    Get PDF
    Tertiary lymphoid structures (TLS) are ectopic aggregates of lymphoid cells in inflamed, infected, or tumoral tissues that are easily recognized on an H&E histology slide as discrete entities, distinct from lymphocytes. TLS are associated with improved cancer prognosis but there is no standardised method available to quantify their presence. Previous studies have used immunohistochemistry to determine the presence of specific cells as a marker of the TLS. This has now been proven to be an underestimate of the true number of TLS. Thus, we propose a methodology for the automated identification and quantification of TLS, based on H&E slides. We subsequently determined the mathematical criteria defining a TLS. TLS regions were identified through a deep convolutional neural network and segmentation of lymphocytes was performed through an ellipsoidal model. This methodology had a 92.87% specificity at 95% sensitivity, 88.79% specificity at 98% sensitivity and 84.32% specificity at 99% sensitivity level based on 144 TLS annotated H&E slides implying that the automated approach was able to reproduce the histopathologists’ assessment with great accuracy. We showed that the minimum number of lymphocytes within TLS is 45 and the minimum TLS area is 6,245ÎŒm2. Furthermore, we have shown that the density of the lymphocytes is more than 3 times those outside of the TLS. The mean density and standard deviation of lymphocytes within a TLS area are 0.0128/ÎŒm2 and 0.0026/ÎŒm2 respectively compared to 0.004/ÎŒm2 and 0.001/ÎŒm2 in non-TLS regions. The proposed methodology shows great potential for automated identification and quantification of the TLS density on digital H&E slides

    Generalized Wishart processes for interpolation over diffusion tensor fields

    Get PDF
    Diffusion Magnetic Resonance Imaging (dMRI) is a non-invasive tool for watching the microstructure of fibrous nerve and muscle tissue. From dMRI, it is possible to estimate 2-rank diffusion tensors imaging (DTI) fields, that are widely used in clinical applications: tissue segmentation, fiber tractography, brain atlas construction, brain conductivity models, among others. Due to hardware limitations of MRI scanners, DTI has the difficult compromise between spatial resolution and signal noise ratio (SNR) during acquisition. For this reason, the data are often acquired with very low resolution. To enhance DTI data resolution, interpolation provides an interesting software solution. The aim of this work is to develop a methodology for DTI interpolation that enhance the spatial resolution of DTI fields. We assume that a DTI field follows a recently introduced stochastic process known as a generalized Wishart process (GWP), which we use as a prior over the diffusion tensor field. For posterior inference, we use Markov Chain Monte Carlo methods. We perform experiments in toy and real data. Results of GWP outperform other methods in the literature, when compared in different validation protocols

    Networking - A Statistical Physics Perspective

    Get PDF
    Efficient networking has a substantial economic and societal impact in a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption require new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with non-linear large scale systems. This paper aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.Comment: (Review article) 71 pages, 14 figure

    Building connectomes using diffusion MRI: why, how and but

    Get PDF
    Why has diffusion MRI become a principal modality for mapping connectomes in vivo? How do different image acquisition parameters, fiber tracking algorithms and other methodological choices affect connectome estimation? What are the main factors that dictate the success and failure of connectome reconstruction? These are some of the key questions that we aim to address in this review. We provide an overview of the key methods that can be used to estimate the nodes and edges of macroscale connectomes, and we discuss open problems and inherent limitations. We argue that diffusion MRI-based connectome mapping methods are still in their infancy and caution against blind application of deep white matter tractography due to the challenges inherent to connectome reconstruction. We review a number of studies that provide evidence of useful microstructural and network properties that can be extracted in various independent and biologically-relevant contexts. Finally, we highlight some of the key deficiencies of current macroscale connectome mapping methodologies and motivate future developments

    Wood Species Dataset

    No full text
    Wood Species Dataset (8544 Macroscopic Images)- Imperial College London - Aristotle University of Thessaloniki (Version 1). File description: SpeciesCategory_PhotoNumber (Ex. 45_3 - 45th Photo - 3rd species category)Wood Species Dataset (8544 Macroscopic Images)- Imperial College London - Aristotle University of Thessaloniki (Version 1). File description: SpeciesCategory_PhotoNumber (Ex. 45_3 - 45th Photo - 3rd species category
    corecore