19,322 research outputs found
An Alternative Parameterization of R-matrix Theory
An alternative parameterization of R-matrix theory is presented which is
mathematically equivalent to the standard approach, but possesses features
which simplify the fitting of experimental data. In particular there are no
level shifts and no boundary-condition constants which allows the positions and
partial widths of an arbitrary number levels to be easily fixed in an analysis.
These alternative parameters can be converted to standard R-matrix parameters
by a straightforward matrix diagonalization procedure. In addition it is
possible to express the collision matrix directly in terms of the alternative
parameters.Comment: 8 pages; accepted for publication in Phys. Rev. C; expanded Sec. IV,
added Sec. VI, added Appendix, corrected typo
New broad 8Be nuclear resonances
Energies, total and partial widths, and reduced width amplitudes of 8Be
resonances up to an excitation energy of 26 MeV are extracted from a coupled
channel analysis of experimental data. The presence of an extremely broad J^pi
= 2^+ ``intruder'' resonance is confirmed, while a new 1^+ and very broad 4^+
resonance are discovered. A previously known 22 MeV 2^+ resonance is likely
resolved into two resonances. The experimental J^pi T = 3^(+)? resonance at 22
MeV is determined to be 3^-0, and the experimental 1^-? (at 19 MeV) and 4^-?
resonances to be isospin 0.Comment: 16 pages, LaTe
Is There a Significant Difference Between the Results of the Coulomb Dissociation of 8B and the Direct Capture 7Be(p,g)8B Reaction?
Recent claims of the Seattle group of evidence of "slope difference between
CD [Coulomb Dissociation] and direct [capture] results" are based on wrong and
selective data. When the RIKEN2 data are included correctly, and previously
published Direct Capture (DC) data are also included, we observe only a 1.9
sigma difference in the extracted so called "scale independent slope (b)",
considerably smaller than claimed by the Seattle group. The very
parameterization used by the Seattle group to extract the so called b-slope
parameter has no physical foundation. Considering the physical slope (S' =
dS/dE), we observe a 1.0 sigma agreement between slopes (S') measured in CD and
DC, refuting the need for new theoretical investigation. The claim that S17(0)
values extracted from CD data are approximately 10% lower than DC results, is
based on misunderstanding of the CD method. Considering all of the published CD
S17(0) results, with adding back an unconfirmed E2 correction of the MSU data,
yields very consistent S17(0) results that agree with recent DC measurements of
the Seattle and Weizmann groups. The recent correction of the b-slope parameter
(0.25 1/MeV) suggested by Esbensen, Bertsch and Snover was applied to the wrong
b-slope parameter calculated by the Seattle group. When considering the correct
slope of the RIKEN2 data, this correction in fact leads to a very small b-slope
parameter (0.14 1/MeV), less than half the central value observed for DC data,
refuting the need to correct the RIKEN2 data. In particular it confirms that
the E2 contribution in the RIKEN2 data is negligible. The dispersion of
measured S17(0) is mostly due to disagreement among individual DC experiments
and not due to either experimental or theoretical aspects of CD.Comment: Reference 12 amended with an important communication from Dr. Bertsc
The B Neutrino Spectrum
Knowledge of the energy spectrum of B neutrinos is an important
ingredient for interpreting experiments that detect energetic neutrinos from
the Sun. The neutrino spectrum deviates from the allowed approximation because
of the broad alpha-unstable Be final state and recoil order corrections to
the beta decay. We have measured the total energy of the alpha particles
emitted following the beta decay of B. The measured spectrum is
inconsistent with some previous measurements, in particular with a recent
experiment of comparable precision. The beta decay strength function for the
transition from B to the accessible excitation energies in Be is fit to
the alpha energy spectrum using the R-matrix approach. Both the positron and
neutrino energy spectra, corrected for recoil order effects, are constructed
from the strength function. The positron spectrum is in good agreement with a
previous direct measurement. The neutrino spectrum disagrees with previous
experiments, particularly for neutrino energies above 12 MeV.Comment: 15 pages, 13 figures, 4 tables, submitted to Phys. Rev. C, typos
correcte
Shaking a Box of Sand
We present a simple model of a vibrated box of sand, and discuss its dynamics
in terms of two parameters reflecting static and dynamic disorder respectively.
The fluidised, intermediate and frozen (`glassy') dynamical regimes are
extensively probed by analysing the response of the packing fraction to steady,
as well as cyclic, shaking, and indicators of the onset of a `glass transition'
are analysed. In the `glassy' regime, our model is exactly solvable, and allows
for the qualitative description of ageing phenomena in terms of two
characteristic lengths; predictions are also made about the influence of grain
shape anisotropy on ageing behaviour.Comment: Revised version. To appear in Europhysics Letter
Glassy dynamics in granular compaction
Two models are presented to study the influence of slow dynamics on granular
compaction. It is found in both cases that high values of packing fraction are
achieved only by the slow relaxation of cooperative structures. Ongoing work to
study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter,
proceedings of the Trieste workshop on 'Unifying concepts in glass physics
Astrophysical factor for the reaction from -matrix analysis and asymptotic normalization coefficient for . Is any fit acceptable?
The reaction provides a path from the CN
cycle to the CNO bi-cycle and CNO tri-cycle. The measured astrophysical factor
for this reaction is dominated by resonant capture through two strong
resonances at and 962 keV and direct capture to
the ground state. Recently, a new measurement of the astrophysical factor for
the reaction has been published [P. J.
LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. The analysis has
been done using the -matrix approach with unconstrained variation of all
parameters including the asymptotic normalization coefficient (ANC). The best
fit has been obtained for the square of the ANC fm,
which exceeds the previously measured value by a factor of . Here we
present a new -matrix analysis of the Notre Dame-LUNA data with the fixed
within the experimental uncertainties square of the ANC
fm. Rather than varying the ANC we add the contribution from a
background resonance that effectively takes into account contributions from
higher levels. Altogether we present 8 fits, five unconstrained and three
constrained. In all the fits the ANC is fixed at the previously determined
experimental value fm. For the unconstrained fit with
the boundary condition , where is the energy of the
second level, we get keVb and normalized , i.e. the result which is similar to [P. J. LeBlanc {\it et
al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. From all our fits we get the range
keVb which overlaps with the result of [P. J.
LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. We address also
physical interpretation of the fitting parameters.Comment: Submitted to PR
How Well Do We Know the Beta-Decay of 16N and Oxygen Formation in Helium Burning
We review the status of the 12C(a,g)16O reaction rate, of importance for
stellar processes in a progenitor star prior to a super-nova collapse. Several
attempts to constrain the p-wave S-factor of the 12C(a,g)16O reaction at Helium
burning temperatures (200 MK) using the beta-delayed alpha-particle emission of
16N have been made, and it is claimed that this S-factor is known, as quoted by
the TRIUMF collaboration. In contrast reanalyses (by G.M. hale) of all thus far
available data (including the 16N data) does not rule out a small S-factor
solution. Furthermore, we improved our previous Yale-UConn study of the beta-
delayed alpha-particle emission of \n16 by improving our statistical sample (by
more than a factor of 5), improving the energy resolution of the experiment (by
20%), and in understanding our line shape, deduced from measured quantities.
Our newly measured spectrum of the beta-delayed alpha-particle emission of 16N
is not consistent with the TRIUMF('94) data, but is consistent with the
Seattle('95) data, as well as the earlier (unaltered !) data of Mainz('71). The
implication of this discrepancies for the extracted astrophysical p-wave
s-factor is briefly discussed.Comment: 6 pages, 4 figures, Invited Talk, Physics With Radioactive Beams,
Puri, India, Jan. 12-17, 1998, Work Supported by USDOE Grant No.
DE-FG02-94ER4087
An analytical model for the detection of levitated nanoparticles in optomechanics
Interferometric position detection of levitated particles is crucial for the
centre-of-mass (CM) motion cooling and manipulation of levitated particles. In
combination with balanced detection and feedback cooling, this system has
provided picometer scale position sensitivity, zeptonewton force detection, and
sub-millikelvin CM temperatures. In this article, we develop an analytical
model of this detection system and compare its performance with experimental
results allowing us to explain the presence of spurious frequencies in the
spectra
Asymptotic normalization coefficients (nuclear vertex constants) for and the direct astrophysical S-factors at solar energies
A new analysis of the precise experimental astrophysical S-factors for the
direct capture reaction [A.J.Junghans et al.Phys.Rev. C
68 (2003) 065803 and L.T. Baby et al. Phys.Rev. C 67 (2003) 065805] is carried
out based on the modified two - body potential approach in which the direct
astrophysical S-factor, , is expressed in terms of the
asymptotic normalization constants for and two additional
conditions are involved to verify the peripheral character of the reaction
under consideration. The Woods-Saxon potential form is used for the bound
()- state wave function and for the - scattering wave function.
New estimates are obtained for the ^{\glqq}indirectly measured\grqq values of
the asymptotic normalization constants (the nuclear vertex constants) for the
and at E 115 keV, including =0. These
values of and asymptotic normalization constants have been used for
getting information about the ^{\glqq}indirectly measured\grqq values of the
wave average scattering length and the wave effective range parameters
for - scattering.Comment: 27 pages, 6 figure
- …