74 research outputs found
A Nodal-iterative technique for criticality calculations in multigroup neutron diffusion models
In this work, a nodal and iterative technique to evaluate the effective multiplication factor as well as the neutron flux, in multigroup diffusion problems, is presented. An iterative scheme, similar to the source iteration method, is implemented to decouple the system of differential equations which is the fundamental mathematical model. Then, analytical solutions are derived for the one-dimensional trans- verse integrated equations, of each energy group, resulting from a nodal approach. Constant approximations are assumed for the unknown transverse leakage terms in the contours of the nodes. In addition, constant and linear representations are investigated to express the fluxes in the source term to be updated in the iterative process. Numerical results for the effective multiplication factor were obtained for a series of two- dimensional multigroup problems with upscattering and downscattering. The procedure is simple, fast, the analysis of the results indicated a satisfactory agreement with results available in the literature and the use of different approximations to the source term seems to be a good alternative, instead of using higher-order approximations on the contour of the nodes, to improve accuracy
The temperature-jump problem for a variable collision frequency model
An analytical version of the discrete-ordinates method is used here in the field of rarefied-gas dynamics to solve a version of the temperature-jump problem that is based on a linearized, variable collision frequency model of the Boltzmann equation. In addition to a complete development of the discrete-ordinates method for the application considered, the computational algorithm is implemented to yield accurate numerical results for three specific cases: the classical BGK model, the Williams model (the collision frequency is proportional to the magnitude of the velocity), and the rigid-sphere model
- …