1,404 research outputs found

    FERENGI: Redshifting galaxies from SDSS to GEMS, STAGES and COSMOS

    Full text link
    We describe the creation of a set of artificially "redshifted" galaxies in the range 0.1<z<1.1 using a set of ~100 SDSS low redshift (v<7000 km/s) images as input. The intention is to generate a training set of realistic images of galaxies of diverse morphologies and a large range of redshifts for the GEMS and COSMOS galaxy evolution projects. This training set allows other studies to investigate and quantify the effects of cosmological redshift on the determination of galaxy morphologies, distortions and other galaxy properties that are potentially sensitive to resolution, surface brightness and bandpass issues. We use galaxy images from the SDSS in the u, g, r, i, z filter bands as input, and computed new galaxy images from these data, resembling the same galaxies as located at redshifts 0.1<z<1.1 and viewed with the Hubble Space Telescope Advanced Camera for Surveys (HST ACS). In this process we take into account angular size change, cosmological surface brightness dimming, and spectral change. The latter is achieved by interpolating a spectral energy distribution that is fit to the input images on a pixel-to-pixel basis. The output images are created for the specific HST ACS point spread function and the filters used for GEMS (F606W and F850LP) and COSMOS (F814W). All images are binned onto the desired pixel grids (0.03" for GEMS and 0.05" for COSMOS) and corrected to an appropriate point spread function. Noise is added corresponding to the data quality of the two projects and the images are added onto empty sky pieces of real data images. We make these datasets available from our website, as well as the code - FERENGI: "Full and Efficient Redshifting of Ensembles of Nearby Galaxy Images" - to produce datasets for other redshifts and/or instruments.Comment: 11 pages, 10 figures, 3 table

    Skycorr: A general tool for spectroscopic sky subtraction

    Get PDF
    Airglow emission lines, which dominate the optical-to-near-IR sky radiation, show strong, line-dependent variability on various time scales. Therefore, the subtraction of the sky background in the affected wavelength regime becomes a problem if plain sky spectra have to be taken at a different time as the astronomical data. A solution of this issue is the physically motivated scaling of the airglow lines in the plain sky data to fit the sky lines in the object spectrum. We have developed a corresponding instrument-independent approach based on one-dimensional spectra. Our code skycorr separates sky lines and sky/object continuum by an iterative approach involving a line finder and airglow line data. The sky lines are grouped according to their expected variability. The line groups in the sky data are then scaled to fit the sky in the science data. Required pixel-specific weights for overlapping groups are taken from a comprehensive airglow model. Deviations in the wavelength calibration are corrected by fitting Chebyshev polynomials and rebinning via asymmetric damped sinc kernels. The scaled sky lines and the sky continuum are subtracted separately. VLT X-Shooter data covering time intervals from two minutes to about one year were selected to illustrate the performance. Except for short time intervals of a few minutes, the sky line residuals were several times weaker than for sky subtraction without fitting. Further tests show that skycorr performs consistently better than the method of Davies (2007) developed for VLT SINFONI data.Comment: 17 pages, 18 figures, accepted for publication in A&

    Gravitational lens candidates in the E-CDFS

    Full text link
    We report ten lens candidates in the E-CDFS from the GEMS survey. Nine of the systems are new detections and only one of the candidates is a known lens system. For the most promising five systems including the known lens system, we present results from preliminary lens mass modelling, which tests if the candidates are plausible lens systems. Photometric redshifts of the candidate lens galaxies are obtained from the COMBO-17 galaxy catalog. Stellar masses of the candidate lens galaxies within the Einstein radius are obtained by using the zz-band luminosity and the VzV-z color-based stellar mass-to-light ratios. As expected, the lensing masses are found to be larger than the stellar masses of the candidate lens galaxies. These candidates have similar dark matter fractions as compared to lenses in SLACS and COSMOS. They also roughly follow the halo mass-stellar mass relation predicted by the subhalo abundance matching technique. One of the candidate lens galaxies qualifies as a LIRG and may not be a true lens because the arc-like feature in the system is likely to be an active region of star formation in the candidate lens galaxy. Amongst the five best candidates, one is a confirmed lens system, one is a likely lens system, two are less likely to be lenses and the status of one of the candidates is ambiguous. Spectroscopic follow-up of these systems is still required to confirm lensing and/or for more accurate determination of the lens masses and mass density profiles.Comment: 12 pages, 5 figures, 3 tables, ApJ accepte

    International Immersion in Counselor Education: A Consensual Qualitative Research Investigation

    Get PDF
    This study used consensual qualitative research methodology to examine the phenomenon of international immersion on counselor education students\u27 (N = 10) development and growth. Seven domains emerged from the data (cultural knowledge, empathy, personal and professional impact, process/reflection, relationships, personal characteristics, and structure). Implications for multicultural education and future research are discussed

    Molecfit: A general tool for telluric absorption correction II. Quantitative evaluation on ESO-VLT X-Shooter spectra

    Full text link
    Context: Absorption by molecules in the Earth's atmosphere strongly affects ground-based astronomical observations. The resulting absorption line strength and shape depend on the highly variable physical state of the atmosphere, i.e. pressure, temperature, and mixing ratio of the different molecules involved. Usually, supplementary observations of so-called telluric standard stars (TSS) are needed to correct for this effect, which is expensive in terms of telescope time. We have developed the software package molecfit to provide synthetic transmission spectra based on parameters obtained by fitting narrow ranges of the observed spectra of scientific objects. These spectra are calculated by means of the radiative transfer code LBLRTM and an atmospheric model. In this way, the telluric absorption correction for suitable objects can be performed without any additional calibration observations of TSS. Aims: We evaluate the quality of the telluric absorption correction using molecfit with a set of archival ESO-VLT X-Shooter visible and near-infrared spectra. Methods: Thanks to the wavelength coverage from the U to the K band, X-Shooter is well suited to investigate the quality of the telluric absorption correction with respect to the observing conditions, the instrumental set-up, input parameters of the code, the signal-to-noise of the input spectrum, and the atmospheric profiles. These investigations are based on two figures of merit, I_off and I_res, that describe the systematic offsets and the remaining small-scale residuals of the corrections. We also compare the quality of the telluric absorption correction achieved with moelcfit to the classical method based on a telluric standard star. (Abridged)Comment: Acc. by A&A; Software available via ESO: http://www.eso.org/sci/software/pipelines/skytools

    Molecfit: A general tool for telluric absorption correction. I. Method and application to ESO instruments

    Full text link
    Context: The interaction of the light from astronomical objects with the constituents of the Earth's atmosphere leads to the formation of telluric absorption lines in ground-based collected spectra. Correcting for these lines, mostly affecting the red and infrared region of the spectrum, usually relies on observations of specific stars obtained close in time and airmass to the science targets, therefore using precious observing time. Aims: We present molecfit, a tool for correcting for telluric absorption lines based on synthetic modelling of the Earth's atmospheric transmission. Molecfit is versatile and can be used with data obtained with various ground-based telescopes and instruments. Methods: Molecfit combines a publicly available radiative transfer code, a molecular line database, atmospheric profiles, and various kernels to model the instrument line spread function. The atmospheric profiles are created by merging a standard atmospheric profile representative of a given observatory's climate, of local meteorological data, and of dynamically retrieved altitude profiles for temperature, pressure, and humidity. We discuss the various ingredients of the method, its applicability, and its limitations. We also show examples of telluric line correction on spectra obtained with a suite of ESO Very Large Telescope (VLT) instruments. Results: Compared to previous similar tools, molecfit takes the best results for temperature, pressure, and humidity in the atmosphere above the observatory into account. As a result, the standard deviation of the residuals after correction of unsaturated telluric lines is frequently better than 2% of the continuum. Conclusion: Molecfit is able to accurately model and correct for telluric lines over a broad range of wavelengths and spectral resolutions. (Abridged)Comment: 18 pages, 13 figures, 5 tables, accepted for publication in Astronomy and Astrophysic

    Galaxy Groups in the SDSS DR4: I. The Catalogue and Basic Properties

    Full text link
    We use a modified version of the halo-based group finder developed by Yang et al. to select galaxy groups from the Sloan Digital Sky Survey (SDSS DR4). In the first step, a combination of two methods is used to identify the centers of potential groups and to estimate their characteristic luminosity. Using an iterative approach, the adaptive group finder then uses the average mass-to-light ratios of groups, obtained from the previous iteration, to assign a tentative mass to each group. This mass is then used to estimate the size and velocity dispersion of the underlying halo that hosts the group, which in turn is used to determine group membership in redshift space. Finally, each individual group is assigned two different halo masses: one based on its characteristic luminosity, and the other based on its characteristic stellar mass. Applying the group finder to the SDSS DR4, we obtain 301237 groups in a broad dynamic range, including systems of isolated galaxies. We use detailed mock galaxy catalogues constructed for the SDSS DR4 to test the performance of our group finder in terms of completeness of true members, contamination by interlopers, and accuracy of the assigned masses. This paper is the first in a series and focuses on the selection procedure, tests of the reliability of the group finder, and the basic properties of the group catalogue (e.g. the mass-to-light ratios, the halo mass to stellar mass ratios, etc.). The group catalogues including the membership of the groups are available at http://gax.shao.ac.cn/data/Group.html and http://www.astro.umass.edu/~xhyang/Group.htmlComment: 19 pages, 12 figures, Accepted for publication in ApJ. Group catalogues are available at http://gax.shao.ac.cn/data/Group.html and http://www.astro.umass.edu/~xhyang/Group.htm

    Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies

    Get PDF
    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC) are an interesting option for photon-photon physics up to about 100 GeV photon-photon CM energy.Comment: REVTeX, 13 pages, 10 figures (uuencoded,compressed postscript
    corecore