9 research outputs found

    Ontogenetic oxycodone exposure affects early life communicative behaviors, sensorimotor reflexes, and weight trajectory in mice

    Get PDF
    Nationwide, opioid misuse among pregnant women has risen four-fold from 1999 to 2014, with commensurate increase in neonates hospitalized for neonatal abstinence syndrome (NAS). NAS occurs when a fetus exposed to opioid

    An open-source device for measuring food intake and operant behavior in rodent home-cages

    Get PDF
    Feeding is critical for survival, and disruption in the mechanisms that govern food intake underlies disorders such as obesity and anorexia nervosa. It is important to understand both food intake and food motivation to reveal mechanisms underlying feeding disorders. Operant behavioral testing can be used to measure the motivational component to feeding, but most food intake monitoring systems do not measure operant behavior. Here, we present a new solution for monitoring both food intake and motivation in rodent home-cages: the Feeding Experimentation Device version 3 (FED3). FED3 measures food intake and operant behavior in rodent home-cages, enabling longitudinal studies of feeding behavior with minimal experimenter intervention. It has a programmable output for synchronizing behavior with optogenetic stimulation or neural recordings. Finally, FED3 design files are open-source and freely available, allowing researchers to modify FED3 to suit their needs

    Corrigendum to ‘An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs’ [J Hepatol 2021;75(3):572–581]

    Get PDF

    Determinants and Socioeconomic Impacts of Migrant Remittances: A Study of Rural Bangladeshi Migrants in Italy

    No full text

    Corrigendum to ‘An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs’ [J Hepatol 2021;75(3):572–581] (Journal of Hepatology (2021) 75(3) (572–581), (S0168827821003342), (10.1016/j.jhep.2021.04.055))

    No full text
    It has come to our attention that the name of one of the authors in our manuscript was incorrectly spelled ‘Jinyoung Byan’; the correct spelling is ‘Jinyoung Byun’ as in the author list above. In addition, the excel files of the supplementary tables were not included during the online publication of our article. These have now been made available online. We apologize for any inconvenience caused

    Corrigendum to \u2018An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs\u2019 [J Hepatol 2021;75(3):572\u2013581] (Journal of Hepatology (2021) 75(3) (572\u2013581), (S0168827821003342), (10.1016/j.jhep.2021.04.055))

    No full text
    It has come to our attention that the name of one of the authors in our manuscript was incorrectly spelled \u2018Jinyoung Byan\u2019; the correct spelling is \u2018Jinyoung Byun\u2019 as in the author list above. In addition, the excel files of the supplementary tables were not included during the online publication of our article. These have now been made available online. We apologize for any inconvenience caused

    Corrigendum to ‘An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs’ [J Hepatol 2021;75(3):572–581] (Journal of Hepatology (2021) 75(3) (572–581), (S0168827821003342), (10.1016/j.jhep.2021.04.055))

    No full text

    An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs.

    Get PDF
    BACKGROUNDS & AIMS Primary biliary cholangitis (PBC) is a chronic liver disease in which autoimmune destruction of the small intrahepatic bile ducts eventually leads to cirrhosis. Many patients have inadequate response to licensed medications, motivating the search for novel therapies. Previous genome-wide association studies (GWAS) and meta-analyses (GWMA) of PBC have identified numerous risk loci for this condition, providing insight into its aetiology. We undertook the largest GWMA of PBC to date, aiming to identify additional risk loci and prioritise candidate genes for in silico drug efficacy screening. METHODS We combined new and existing genotype data for 10,516 cases and 20,772 controls from 5 European and 2 East Asian cohorts. RESULTS We identified 56 genome-wide significant loci (20 novel) including 46 in European, 13 in Asian, and 41 in combined cohorts; and a 57 genome-wide significant locus (also novel) in conditional analysis of the European cohorts. Candidate genes at newly identified loci include FCRL3, INAVA, PRDM1, IRF7, CCR6, CD226, and IL12RB1, which each play key roles in immunity. Pathway analysis reiterated the likely importance of pattern recognition receptor and TNF signalling, JAK-STAT signalling, and differentiation of T helper (T)1 and T17 cells in the pathogenesis of this disease. Drug efficacy screening identified several medications predicted to be therapeutic in PBC, some of which are well-established in the treatment of other autoimmune disorders. CONCLUSIONS This study has identified additional risk loci for PBC, provided a hierarchy of agents that could be trialled in this condition, and emphasised the value of genetic and genomic approaches to drug discovery in complex disorders. LAY SUMMARY Primary biliary cholangitis (PBC) is a chronic liver disease that eventually leads to cirrhosis. In this study, we analysed genetic information from 10,516 people with PBC and 20,772 healthy individuals recruited in Canada, China, Italy, Japan, the UK, or the USA. We identified several genetic regions associated with PBC. Each of these regions contains several genes. For each region, we used diverse sources of evidence to help us choose the gene most likely to be involved in causing PBC. We used these 'candidate genes' to help us identify medications that are currently used for treatment of other conditions, which might also be useful for treatment of PBC
    corecore