5,195 research outputs found

    Advances on creep–fatigue damage assessment in notched components

    Get PDF
    In this paper, the extended Direct Steady Cyclic Analysis method (eDSCA) within the Linear Matching Method Framework (LMMF) is combined with the Stress Modified Ductility Exhaustion method and the modified Cavity Growth Factor (CGF) for the first time. This new procedure is used to systematically investigate the effect of several load parameters including load level, load type and creep dwell duration on the creep–fatigue crack initiation process in a notched specimen. The results obtained are verified through a direct comparison with experimental results available in the literature demonstrating great accuracy in predicting the crack initiation life and the driving mechanisms. Furthermore, this extensive numerical study highlighted the possible detrimental effect of the creep–ratchetting mechanism on the crack growth process. This work has a significant impact on structural integrity assessments of complex industrial components and for the better understanding of creep–fatigue lab scale tests

    Baseline design of the filters for the LAD detector on board LOFT

    Full text link
    The Large Observatory for X-ray Timing (LOFT) was one of the M3 missions selected for the phase A study in the ESA's Cosmic Vision program. LOFT is designed to perform high-time-resolution X-ray observations of black holes and neutron stars. The main instrument on the LOFT payload is the Large Area Detector (LAD), a collimated experiment with a nominal effective area of ~10 m 2 @ 8 keV, and a spectral resolution of ~240 eV in the energy band 2-30 keV. These performances are achieved covering a large collecting area with more than 2000 large-area Silicon Drift Detectors (SDDs) each one coupled to a collimator based on lead-glass micro-channel plates. In order to reduce the thermal load onto the detectors, which are open to Sky, and to protect them from out of band radiation, optical-thermal filter will be mounted in front of the SDDs. Different options have been considered for the LAD filters for best compromise between high quantum efficiency and high mechanical robustness. We present the baseline design of the optical-thermal filters, show the nominal performances, and present preliminary test results performed during the phase A study.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91446

    Age, metallicity and star formation history of spheroidal galaxies in cluster at z~1.2

    Get PDF
    We present the analysis, based on spectra collected at the Large Binocular Telescope, of the stellar populations in seven spheroidal galaxies in the cluster XLSSJ0223 at zz∼\sim1.22. The aim is to constrain the epoch of their formation and their star formation history. Using absorption line strenghts and full spectral fitting, we derive for the stellar populations of the seven spheroids a median age =2.4±\pm0.6 Gyr, corresponding to a median formation redshift $\sim2.6_{-0.5}^{+0.7}$ (lookback time = 11$_{-1.0}^{+0.6}$ Gyr). We find a significant scatter in age, showing that massive spheroids, at least in our targeted cluster, are not coeval. The median metallicity is [Z/H]=0.09$\pm$0.16, as for early-types in clusters at 0$<z<0.9.Thislackofevolutionof[Z/H]overtherange0<0.9. This lack of evolution of [Z/H] over the range 0<zz<1.3,correspondingtothelast9billionsyears,suggeststhatnosignificantadditionalstarformationandchemicalenrichmentarerequiredforclusterspheroidstoreachthepresent−daypopulation.Wedonotdetectsignificantcorrelationbetweenageandvelocitydispersion1.3, corresponding to the last 9 billions years, suggests that no significant additional star formation and chemical enrichment are required for cluster spheroids to reach the present-day population. We do not detect significant correlation between age and velocity dispersion \sigma_e,ordynamicalmassM, or dynamical mass M_{dyn},oreffectivestellarmassdensity, or effective stellar mass density \Sigma_e.Onthecontrary,themetallicity[Z/H]ofthesevenspheroidsiscorrelatedtotheirdynamicalmassM. On the contrary, the metallicity [Z/H] of the seven spheroids is correlated to their dynamical mass M_{dyn},accordingtoarelationsimilartotheoneforlocalspheroids.[Z/H]isalsoanticorrelatedtostellarmassdensity, according to a relation similar to the one for local spheroids. [Z/H] is also anticorrelated to stellar mass density \Sigma_ebecauseoftheanticorrelationbetweenM because of the anticorrelation between M_{dyn}and and \Sigma_e.Therefore,thebasictrendsobservedinthelocaluniversewerealreadyestablishedat. Therefore, the basic trends observed in the local universe were already established at z\sim1.3$, i.e. more massive spheroids are more metal rich, have lower stellar mass density and tend to be older than lower-mass galaxies.Comment: 16 pages, 6 figures, 6 tables, published on MNRA

    On the creep fatigue behavior of Metal Matrix Composites

    Get PDF
    The mechanical behaviour of Metal Matrix Composites (MMCs) subjected to a high temperature and cyclic load condition is difficult to understand. The significantly differing coefficients of thermal expansion between ceramic and metal give rise to micro thermal stresses. Their performance under varying load and high temperature is complex and inconsistent, where fatigue and creep damages become the main failures of MMCs. To improve current understanding of the relationship between creep fatigue interaction of MMCs, the history of thermal and mechanical loading, and the creep dwell period, a highly accurate but robust direct simulation technique on the basis of the Linear Matching Method (LMM) framework has been proposed in this paper, and been applied to model the fatigue and creep behaviour of MMCs. A homogenised FE model is considered in all analyses, which consist of continuous silicon carbide fibres embedded in a square 2024T3 aluminium alloy matrix array. Various factors that affect creep and fatigue behaviours of composites are analysed and discussed, including effects of the applied load level, dwell period and temperature on the MMC's performance. The effects of reversed plasticity on stress relaxation and creep deformation of MMC are investigated, and the behaviours of cyclically enhanced creep and elastic follow-up are presented. The applicability and accuracy of the proposed direct method has also been verified by the detailed step-by-step analysis via Abaqus

    The puzzling interpretation of NIR indices: The case of NaI2.21

    Get PDF
    We present a detailed study of the Na I line strength index centered in the KK-band at 2210022100, {\AA} (NaI2.21 hereafter) relying on different samples of early-type galaxies. Consistent with previous studies, we find that the observed line strength indices cannot be fit by state-of-art scaled-solar stellar population models, even using our newly developed models in the NIR. The models clearly underestimate the large NaI2.21 values measured for most early-type galaxies. However, we develop a Na-enhanced version of our newly developed models in the NIR, which - together with the effect of a bottom-heavy initial mass function - yield NaI2.21 indices in the range of the observations. Therefore, we suggest a scenario in which the combined effect of [Na/Fe] enhancement and a bottom-heavy initial mass function are mainly responsible for the large NaI2.21 indices observed for most early-type galaxies. To a smaller extent, also [C/Fe] enhancement might contribute to the large observed NaI2.21 values.Comment: 13 pages, 4 figures, accepted for publication in MNRA

    Use of Robotics kits for the enhancement of metacognitive skills of mathematics: a possible approach

    Get PDF
    The present study is aimed at analyzing the process of building and programming robots as a metacognitive tool of mathematics. Quantitative data from a study performed on a sample of students attending an Italian secondary school are described. Results showed that robotics activities may be used as a new metacognitive environment allowing students to improve their attitude towards mathematics, and to increase their attitude to reflect on themselves and on their own learning, and their higher-level control components, such as forecasting, planning, monitoring and evaluation exercises and problems related to implementation

    IMF and [Na/Fe] abundance ratios from optical and NIR Spectral Features in Early-type Galaxies

    Get PDF
    We present a joint analysis of the four most prominent sodium-sensitive features (NaD, NaI8190, NaI1.14, and NaI2.21), in the optical and Near-Infrared spectral range, of two nearby, massive (sigma~300km/s), early-type galaxies (named XSG1 and XSG2). Our analysis relies on deep VLT/X-Shooter long-slit spectra, along with newly developed stellar population models, allowing for [Na/Fe] variations, up to 1.2dex, over a wide range of age, total metallicity, and IMF slope. The new models show that the response of the Na-dependent spectral indices to [Na/Fe] is stronger when the IMF is bottom heavier. For the first time, we are able to match all four Na features in the central regions of massive early-type galaxies, finding an overabundance of [Na/Fe], in the range 0.5-0.7dex, and a bottom-heavy IMF. Therefore, individual abundance variations cannot be fully responsible for the trends of gravity-sensitive indices, strengthening the case towards a non-universal IMF. Given current limitations of theoretical atmosphere models, our [Na/Fe] estimates should be taken as upper limits. For XSG1, where line strengths are measured out to 0.8Re, the radial trend of [Na/Fe] is similar to [Mg/Fe] and [C/Fe], being constant out to 0.5Re, and decreasing by 0.2-0.3dex at 0.8Re, without any clear correlation with local metallicity. Such a result seems to be in contrast with the predicted increase of Na nucleosynthetic yields from AGB stars and TypeII SNe. For XSG1, the Na-inferred IMF radial profile is consistent, within the errors, with that derived from TiO features and the Wing-Ford band, presented in a recent paper.Comment: 22 pages, 8 figure, accepted for publication in MNRAS. The new Na-enhanced models will be available soon at http://miles.iac.es

    Borderline personality in patients with poly-diagnoses treated for a Bipolar Disorder

    Get PDF
    Some patients with dysphoria, explosive behaviour, or suicidal ideation, may receive a diagnosis of, and treatment for Bipolar Disorder (BD) and, not infrequently. The coexistence of these two diagnoses has been explained in different ways. Some authors include the BPD in the bipolar spectrum; others are sceptical about the existence of real comorbidity, suggesting a misdiagnosis. This study aimed to assess the personality of this group of poly-diagnosed patients (PolyD) and hypothesised they had a pathological borderline organisation. Via the administration of the Schedler Westen Assessment Procedure (SWAP-200), we compared PolyD patients with those suffering from BPD or BD only. We performed two different MANCOVAs to test PolyD, BPD and BD patients' differences in PD-factors, Q-traits and age. The sample comprised 45 patients (Mean age=43.3, SD=15.7; Females 57.7%, N=26). BD patients (N=15) did not present any personality disorder, they had a higher functioning and Obsessive Q-traits, and a lower Histrionic PD-factor than both PolyD (N=20) and BPD (N=10) patients. Compared to PolyD patients, BD had inferior PD-Borderline, PD-Antisocial factor and Dependent-Masochistic Q-traits, but there were no other differences with BPD patients. PolyD did not differ from BPD patients in any of the PD-factors and Q-traits. Our results suggest that PolyD patients are different from BD patients and propose to consider the pathological borderline personality as a central core of their disease
    • …
    corecore