17 research outputs found
Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel
Dark matter lighter than 10 GeV/c encompasses a promising range of
candidates. A conceptual design for a new detector, DarkSide-LowMass, is
presented, based on the DarkSide-50 detector and progress toward DarkSide-20k,
optimized for a low-threshold electron-counting measurement. Sensitivity to
light dark matter is explored for various potential energy thresholds and
background rates. These studies show that DarkSide-LowMass can achieve
sensitivity to light dark matter down to the solar neutrino floor for GeV-scale
masses and significant sensitivity down to 10 MeV/c considering the Migdal
effect or interactions with electrons. Requirements for optimizing the
detector's sensitivity are explored, as are potential sensitivity gains from
modeling and mitigating spurious electron backgrounds that may dominate the
signal at the lowest energies
Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel
Dark matter lighter than 10 GeV/c2 encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino fog for GeV-scale masses and significant sensitivity down to 10 MeV/c2 considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector’s sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies
Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos
Future liquid-argon DarkSide-20k and Argo detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of ∼50 t and ∼360 t for DarkSide-20k and Argo respectively. Thanks to the low-energy threshold of ∼0.5 keVnr achievable by exploiting the ionization channel, DarkSide-20k and Argo have the potential to discover supernova bursts throughout our galaxy and up to the Small Magellanic Cloud, respectively, assuming a 11-M⊙ progenitor star. We report also on the sensitivity to the neutronization burst, whose electron neutrino flux is suppressed by oscillations when detected via charged current and elastic scattering. Finally, the accuracies in the reconstruction of the average and total neutrino energy in the different phases of the supernova burst, as well as its time profile, are also discussed, taking into account the expected background and the detector response
Separating Ar39 from Ar40 by cryogenic distillation with Aria for dark matter searches
Aria is a plant hosting a 350m cryogenic isotopic distillation column, the tallest ever built, which is being installed in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. It was designed to reduce the isotopic abundance of 39Ar in argon extracted from underground sources, called Underground Argon (UAr), which is used for dark-matter searches. Indeed, 39Ar is a -emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors. In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of the isotopic cryogenic distillation of nitrogen with a prototype plant
Separating from by cryogenic distillation with Aria for dark-matter searches
Aria is a plant hosting a 350 m cryogenic isotopic distillation column, the tallest ever built, which is being installed in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. It was designed to reduce the isotopic abundance of 39Ar in argon extracted from underground sources, called Underground Argon (UAr), which is used for dark-matter searches. Indeed, 39Ar is a beta -emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors. In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of the isotopic cryogenic distillation of nitrogen with a prototype plant
Separating 39Ar from 40Ar by cryogenic distillation with Aria for dark-matter searches
Aria is a plant hosting a 350m cryogenic isotopic distillation column, the tallest ever built, which is being installed in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. It was designed to reduce the isotopic abundance of 39Ar in argon extracted from underground sources, called Underground Argon (UAr), which is used for dark-matter searches. Indeed, 39Ar is a \u3b2-emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors. In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of the isotopic cryogenic distillation of nitrogen with a prototype plant
Recommended from our members
Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos
none276Future liquid-argon DarkSide-20k and Argo detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of ∼50 t and ∼360 t for DarkSide-20k and Argo respectively. Thanks to the low-energy threshold of ∼0.5 keVnr achievable by exploiting the ionization channel, DarkSide-20k and Argo have the potential to discover supernova bursts throughout our galaxy and up to the Small Magellanic Cloud, respectively, assuming a 11-M⊙ progenitor star. We report also on the sensitivity to the neutronization burst, whose electron neutrino flux is suppressed by oscillations when detected via charged current and elastic scattering. Finally, the accuracies in the reconstruction of the average and total neutrino energy in the different phases of the supernova burst, as well as its time profile, are also discussed, taking into account the expected background and the detector response.noneAgnes P.; Albergo S.; Albuquerque I.F.M.; Alexander T.; Alici A.; Alton A.K.; Amaudruz P.; Arcelli S.; Ave M.; Avetissov I.C.; Avetisov R.I.; Azzolini O.; Back H.O.; Balmforth Z.; Barbarian V.; Barrado Olmedo A.; Barrillon P.; Basco A.; Batignani G.; Bondar A.; Bonivento W.M.; Borisova E.; Bottino B.; Boulay M.G.; Buccino G.; Bussino S.; Busto J.; Buzulutskov A.; Cadeddu M.; Cadoni M.; Caminata A.; Canci N.; Cappello G.; Caravati M.; Cardenas-Montes M.; Carlini M.; Carnesecchi F.; Castello P.; Catalanotti S.; Cataudella V.; Cavalcante P.; Cavuoti S.; Cebrian S.; Cela Ruiz J.M.; Celano B.; Chashin S.; Chepurnov A.; Chyhyrynets E.; Cicalo C.; Cifarelli L.; Cintas D.; Coccetti F.; Cocco V.; Colocci M.; E. Conde Vilda; Consiglio L.; Copello S.; Corning J.; Covone G.; Czudak P.; D'Auria S.; Da Rocha Rolo M.D.; Dadoun O.; Daniel M.; Davini S.; De Candia A.; De Cecco S.; De Falco A.; De Filippis G.; De Gruttola D.; De Guido G.; De Rosa G.; Della Valle M.; Dellacasa G.; De Pasquale S.; Derbin A.V.; Devoto A.; Di Noto L.; Dionisi C.; Di Stefano P.; Dolganov G.; Dordei F.; Doria L.; Downing M.; Erjavec T.; Fernandez Diaz M.; Fiorillo G.; Franceschi A.; Franco D.; Frolov E.; Funicello N.; Gabriele F.; Galbiati C.; Garbini M.; Garcia Abia P.; Gendotti A.; Ghiano C.; Giampaolo R.A.; Giganti C.; Giorgi M.A.; Giovanetti G.K.; Goicoechea Casanueva V.; Gola A.; Graciani Diaz R.; Grigoriev G.Y.; Grobov A.; Gromov M.; Guan M.; Guerzoni M.; Gulino M.; Guo C.; Hackett B.R.; Hallin A.; Haranczyk M.; Hill S.; Horikawa S.; Hubaut F.; Hugues T.; Hungerford E.V.; Ianni A.; Ippolito V.; James C.C.; Jillings C.; Kachru P.; Kemp A.A.; Kendziora C.L.; Keppel G.; Khomyakov A.V.; Kim S.; Kish A.; Kochanek I.; Kondo K.; Korga G.; Kubankin A.; Kugathasan R.; Kuss M.; Kuzniak M.; La Commara M.; Lai M.; Langrock S.; Leyton M.; Li X.; Lidey L.; Lissia M.; Longo G.; Machulin I.N.; Mapelli L.; Marasciulli A.; Margotti A.; Mari S.M.; Maricic J.; Martinez M.; Martinez Rojas A.D.; Martoff C.J.; Masoni A.; Mazzi A.; McDonald A.B.; Mclaughlin J.; Messina A.; Meyers P.D.; Miletic T.; Milincic R.; Moggi A.; Moharana A.; Moioli S.; Monroe J.; Morisi S.; Morrocchi M.; Mozhevitina E.N.; Mroz T.; Muratova V.N.; Muscas C.; Musenich L.; Musico P.; Nania R.; Napolitano T.; Navrer Agasson A.; Nessi M.; Nikulin I.; Nowak J.; Oleinik A.; Oleynikov V.; Pagani L.; Pallavicini M.; Pandola L.; Pantic E.; Paoloni E.; Paternoster G.; Pegoraro P.A.; Pelczar K.; Pellegrini L.A.; Pellegrino C.; Perotti F.; Pesudo V.; Picciau E.; Pietropaolo F.; Pira C.; Pocar A.; Poehlmann D.M.; Pordes S.; Poudel S.S.; Pralavorio P.; Price D.; Raffaelli F.; Ragusa F.; Ramirez A.; Razeti M.; Razeto A.; Renshaw A.L.; Rescia S.; Rescigno M.; Resnati F.; Retiere F.; Rignanese L.P.; Ripoli C.; Rivetti A.; Rode J.; Romero L.; Rossi M.; Rubbia A.; Salatino P.; Samoylov O.; Sanchez Garcia E.; Sandford E.; Sanfilippo S.; Santone D.; Santorelli R.; Savarese C.; Scapparone E.; Schlitzer B.; Scioli G.; Semenov D.A.; Shaw B.; Shchagin A.; Sheshukov A.; Simeone M.; Skensved P.; Skorokhvatov M.D.; Smirnov O.; Smith B.; Sokolov A.; Steri A.; Stracka S.; Strickland V.; Stringer M.; Sulis S.; Suvorov Y.; Szelc A.M.; Tartaglia R.; Testera G.; Thorpe T.N.; Tonazzo A.; Torres-Lara S.; Tricomi A.; Unzhakov E.V.; Usai G.; Vallivilayil John T.; Viant T.; Viel S.; Vishneva A.; Vogelaar R.B.; Wada M.; Wang H.; Wang Y.; Westerdale S.; Wheadon R.J.; Williams L.; Wojcik M.M.; Wojcik M.; Xiao X.; Yang C.; Ye Z.; Zani A.; Zichichi A.; Zuzel G.; Zykova M.P.Agnes, P.; Albergo, S.; Albuquerque, I. F. M.; Alexander, T.; Alici, A.; Alton, A. K.; Amaudruz, P.; Arcelli, S.; Ave, M.; Avetissov, I. C.; Avetisov, R. I.; Azzolini, O.; Back, H. O.; Balmforth, Z.; Barbarian, V.; Barrado Olmedo, A.; Barrillon, P.; Basco, A.; Batignani, G.; Bondar, A.; Bonivento, W. M.; Borisova, E.; Bottino, B.; Boulay, M. G.; Buccino, G.; Bussino, S.; Busto, J.; Buzulutskov, A.; Cadeddu, M.; Cadoni, M.; Caminata, A.; Canci, N.; Cappello, G.; Caravati, M.; Cardenas-Montes, M.; Carlini, M.; Carnesecchi, F.; Castello, P.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Cavuoti, S.; Cebrian, S.; Cela Ruiz, J. M.; Celano, B.; Chashin, S.; Chepurnov, A.; Chyhyrynets, E.; Cicalo, C.; Cifarelli, L.; Cintas, D.; Coccetti, F.; Cocco, V.; Colocci, M.; E., Conde Vilda; Consiglio, L.; Copello, S.; Corning, J.; Covone, G.; Czudak, P.; D'Auria, S.; Da Rocha Rolo, M. D.; Dadoun, O.; Daniel, M.; Davini, S.; De Candia, A.; De Cecco, S.; De Falco, A.; De Filippis, G.; De Gruttola, D.; De Guido, G.; De Rosa, G.; Della Valle, M.; Dellacasa, G.; De Pasquale, S.; Derbin, A. V.; Devoto, A.; Di Noto, L.; Dionisi, C.; Di Stefano, P.; Dolganov, G.; Dordei, F.; Doria, L.; Downing, M.; Erjavec, T.; Fernandez Diaz, M.; Fiorillo, G.; Franceschi, A.; Franco, D.; Frolov, E.; Funicello, N.; Gabriele, F.; Galbiati, C.; Garbini, M.; Garcia Abia, P.; Gendotti, A.; Ghiano, C.; Giampaolo, R. A.; Giganti, C.; Giorgi, M. A.; Giovanetti, G. K.; Goicoechea Casanueva, V.; Gola, A.; Graciani Diaz, R.; Grigoriev, G. Y.; Grobov, A.; Gromov, M.; Guan, M.; Guerzoni, M.; Gulino, M.; Guo, C.; Hackett, B. R.; Hallin, A.; Haranczyk, M.; Hill, S.; Horikawa, S.; Hubaut, F.; Hugues, T.; Hungerford, E. V.; Ianni, A.; Ippolito, V.; James, C. C.; Jillings, C.; Kachru, P.; Kemp, A. A.; Kendziora, C. L.; Keppel, G.; Khomyakov, A. V.; Kim, S.; Kish, A.; Kochanek, I.; Kondo, K.; Korga, G.; Kubankin, A.; Kugathasan, R.; Kuss, M.; Kuzniak, M.; La Commara, M.; Lai, M.; Langrock, S.; Leyton, M.; Li, X.; Lidey, L.; Lissia, M.; Longo, G.; Machulin, I. N.; Mapelli, L.; Marasciulli, A.; Margotti, A.; Mari, S. M.; Maricic, J.; Martinez, M.; Martinez Rojas, A. D.; Martoff, C. J.; Masoni, A.; Mazzi, A.; Mcdonald, A. B.; Mclaughlin, J.; Messina, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Moggi, A.; Moharana, A.; Moioli, S.; Monroe, J.; Morisi, S.; Morrocchi, M.; Mozhevitina, E. N.; Mroz, T.; Muratova, V. N.; Muscas, C.; Musenich, L.; Musico, P.; Nania, R.; Napolitano, T.; Navrer Agasson, A.; Nessi, M.; Nikulin, I.; Nowak, J.; Oleinik, A.; Oleynikov, V.; Pagani, L.; Pallavicini, M.; Pandola, L.; Pantic, E.; Paoloni, E.; Paternoster, G.; Pegoraro, P. A.; Pelczar, K.; Pellegrini, L. A.; Pellegrino, C.; Perotti, F.; Pesudo, V.; Picciau, E.; Pietropaolo, F.; Pira, C.; Pocar, A.; Poehlmann, D. M.; Pordes, S.; Poudel, S. S.; Pralavorio, P.; Price, D.; Raffaelli, F.; Ragusa, F.; Ramirez, A.; Razeti, M.; Razeto, A.; Renshaw, A. L.; Rescia, S.; Rescigno, M.; Resnati, F.; Retiere, F.; Rignanese, L. P.; Ripoli, C.; Rivetti, A.; Rode, J.; Romero, L.; Rossi, M.; Rubbia, A.; Salatino, P.; Samoylov, O.; Sanchez Garcia, E.; Sandford, E.; Sanfilippo, S.; Santone, D.; Santorelli, R.; Savarese, C.; Scapparone, E.; Schlitzer, B.; Scioli, G.; Semenov, D. A.; Shaw, B.; Shchagin, A.; Sheshukov, A.; Simeone, M.; Skensved, P.; Skorokhvatov, M. D.; Smirnov, O.; Smith, B.; Sokolov, A.; Steri, A.; Stracka, S.; Strickland, V.; Stringer, M.; Sulis, S.; Suvorov, Y.; Szelc, A. M.; Tartaglia, R.; Testera, G.; Thorpe, T. N.; Tonazzo, A.; Torres-Lara, S.; Tricomi, A.; Unzhakov, E. V.; Usai, G.; Vallivilayil John, T.; Viant, T.; Viel, S.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Wang, H.; Wang, Y.; Westerdale, S.; Wheadon, R. J.; Williams, L.; Wojcik, M. M.; Wojcik, M.; Xiao, X.; Yang, C.; Ye, Z.; Zani, A.; Zichichi, A.; Zuzel, G.; Zykova, M. P
Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel
Dark matter lighter than 10 GeV/c2 encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino fog for GeV-scale masses and significant sensitivity down to 10 MeV/c2 considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector's sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies