9 research outputs found

    Diversity of the Chemical Profile and Biological Activity of Capsicum annuum L. Extracts in Relation to Their Lipophilicity

    Get PDF
    Ethanol extracts of two types of pepper (sweet and hot) were separated into fractions with increasing lipophilicity. After drying the extracts and fractions, their chemical composition, anti-radical activity in the DPPH radical system, and cytotoxic activity against PC-3 and HTC-116 cells were determined. A detailed qualitative analysis of the fractions was performed with the LC-QTOF-MS method. It was found that the chemical composition of pepper fractions did not always reflect their biological activity. The highest antiradical activity was detected in the fraction eluted with 40% methanol from sweet pepper. The highest total content of phenolic compounds was found in an analogous fraction from hot pepper, and this fraction showed the strongest cytotoxic effect on the PC-3 tumour line. The LC-MS analysis identified 53 compounds, six of which were present only in sweet pepper and four only in hot pepper. The unique chemical composition of the extracts was found to modulate their biological activity, which can only be verified experimentally.The project is financed under the program of the Minister of Science and Higher Education under the name “Regional Initiative of Excellence” in 2019–2022 project number 029/RID/2018/19 funding amount 11 927 330.00 PLN”

    Ozonation of Hot Red Pepper Fruits Increases Their Antioxidant Activity and Changes Some Antioxidant Contents

    No full text
    The effect of treatment of pepper fruits with gaseous ozone and storage time following the ozonation process on changes in the content of lipophilic fraction is analyzed for the first time in this paper. The aim of the present study was to assess the impact of ozone treatment on the composition of lipophilic compound fraction and its antioxidant activity (AA). Pepper fruits of cv. Cyklon were ozonated for 1 and 3 h immediately after harvesting. Then, the fruits were stored for 30 days under refrigeration conditions. The total content of phenolic compounds and the AA of the lipophilic fraction isolated from the pericarp and placenta of the fruits were investigated after 10, 20, and 30 days of storage. Additionally, quantitative high-performance liquid chromatography diode array detection analysis of individual phenolic compounds was performed. The results revealed that the content and activity of secondary metabolites varied during storage, with the highest values recorded on the 20th day after harvest, both in control and ozonated fruits, regardless of the ozone dosage used. Treatment of the fruits with ozone for 3 h, but not for 1 h, exhibited a positive effect on the phenolic composition and AA during the prolonged storage of pepper fruits. Three hours of ozonation seems to be the appropriate time to increase the persistence of pepper fruits during storage

    Phenolic Compounds in Fractionated Blackcurrant Leaf Extracts in Relation to the Biological Activity of the Extracts

    No full text
    The aim of this study was to determine the relationship between antioxidant and anticancer properties of extracts from blackcurrant (Ribes nigrum L.) leaves and their fractions and chemical contents. Dried ethanolic extract was divided into three fractions using solid phase extraction: aqueous (F1), 40% MeOH (F2), and 70% MeOH (F3). Both the extract and the fractions were analyzed in terms of antiradical activity (DPPH• and ABTS+•), total phenolic compounds, and total flavonoids. The antitumor potential of the fractions was evaluated in vitro on human colorectal (HCT 116) and prostate (PC-3) cancer cells. Phenolics were identified using HPLC-QTOF-MS, and twelve compounds were quantified by HPLC-DAD. Finally, principal component analysis was carried out to assess the relationship between the tested factors. The results confirmed that blackcurrant leaves are a rich source of phenolics with high antioxidant activity and anticancer properties. It was demonstrated that the F2 fraction had the highest content of phenolics and the highest antiradical activity. Additionally, only this fraction showed cytotoxic activity against HCT 116 cells. It was confirmed that both the blackcurrant leaf extract and its fractions are a promising source of condensed active compounds and can be used as natural functional food additives

    Reduction of Nitrite in Canned Pork through the Application of Black Currant (<i>Ribes nigrum</i> L.) Leaves Extract

    No full text
    Sodium nitrite is a multifunctional additive commonly used in the meat industry. However, this compound has carcinogenic potential, and its use should be limited. Therefore, in this study the possibility of reducing the amount of sodium(III) nitrite added to canned meat from 100 to 50 mg/kg, while enriching it with freeze-dried blackcurrant leaf extract, was analyzed. The possibility of fortification of canned meat with blackcurrant leaf extract was confirmed. It contained significant amounts of phenolic acids and flavonoid derivatives. These compounds contributed to their antioxidant activity and their ability to inhibit the growth of selected Gram-positive bacteria. In addition, it was observed that among the three different tested doses (50, 100, and 150 mg/kg) of the blackcurrant leaf extract, the addition of the highest dose allowed the preservation of the antioxidant properties of canned meat during 180 days of storage (4 °C). At the end of the storage period, this variant was characterized by antiradical activity against ABTS (at the level of 4.04 mgTrolox/mL) and the highest reducing capacity. The addition of 150 mg/kg of blackcurrant leaf extract caused a reduction in oxidative transformations of fat in meat products during the entire storage period, reaching a level of TBARS almost two times less than in the control sample. In addition, these products were generally characterized by stability (or slight fluctuations) of color parameters and good microbiological quality and did not contain N-nitrosamines

    The Secondary Metabolites Profile in Horse Chestnut Leaves Infested with Horse-Chestnut Leaf Miner

    No full text
    Natural defensive substances synthesized by plants that could replace synthetic pesticides in the protection of plants against insect invasions are constantly being sought. The study assessed changes in the qualitative and quantitative composition of secondary metabolites in horse chestnut leaves collected in different locations and differing in the sensitivity of the plant to the invasion by the horse-chestnut leaf miner. An attempt was made to identify compounds that are most responsible for the increased plant resistance to this threat. Additionally, changes in the anatomy of chestnut leaves affected by the pest were presented. It was noticed that the trees differed in the composition of secondary metabolites already in the initial growing season, which should be related to the influence of habitat conditions. The analysis of the profile of the compounds in non-infested and infested horse chestnut leaves revealed a clear response of the plant to the stress factor, i.e., the foraging of the horse-chestnut leaf miner. Catechins seem to be compounds involved in plant resistance. The leaf anatomy showed enhanced accumulation of phenolic compounds at the pest foraging sites. Hypertrophy and thickened and cracked cell walls of the spongy parenchyma were visible in the vicinity of the mines

    Polyphenolic profiles in lettuce (Lactuca sativa L.) after CaCl2 treatment and cold storage

    Get PDF
    Lettuce (Lactuca sativa L.) is a popular vegetable with the health-enhancing properties determined by high levels of antioxidant polyphenols as chlorogenic acids and other derivatives of caffeic acid or flavonoids. In this study, changes in the phenolic compound profiles in the lettuce leaves induced by application of CaCl2 before harvest and cold storage were studied. For the first time quantitative analysis of individual phenolic compounds on the basis of standards isolated from lettuce leaves was performed. Compounds were identified using HPLC, LC-MS, 1H and 13CNMR techniques. The dominant compounds were 2,3-dicaffeoyltartaric (2,3-diCTA), 5-O-caffeoylquinic (5-OCQA) and caffeoyltartaric (CTA) acids, with content of 5.7, 2.5 and 0.981&nbsp;mg/g DM, respectively. The levels of individual phenolic compounds, total phenolics and antioxidant activity (DPPH assay) in plants treated by CaCl2 were determined throughout the storage period (7 and 14&nbsp;days) at 4&nbsp;°C. To ascertain the relationship between the content of individual compounds, total phenols, antioxidant activities and storage time, Pearson’s correlation analysis was used. The best correlation between the storage length and compound concentration was observed for 2,3-diCTA (R2 = 0.866) and caffeoylmalic acid (CMA) (R2 = 0.750). Application of CaCl2 (0.05M) on lettuce resulted in an increase in the levels of CTA, 2.3-diCTA and 5-OCQA about 120, 65 and 57%, respectively, compared to the control stored for 7 days in the same conditions and had a favourable effect on the antioxidant activity (R2 = 0.985). The present paper shows that CaCl2 may be used as an agent that influences the stability of health-promoting compounds of cold-stored lettuce
    corecore