16 research outputs found

    Curado de anchoa (engraulis encrasicholus), por sustitución parcial o total del cloruro sódico (nacl),por cloruro potásico (kcl) y/o cloruro magnésico(mgcl)

    Get PDF
    Debido a que un porcentaje significativo de la población mundial sufre problemas cardiovasculares y afecciones hepáticas por retención de líquidos, en parte causada y/o acentuada por la ingesta de sodio, se decidió realizar el presente estudio con el propósito de obtener un producto curado mas cardiosaludable, de alto consumo en España y los países mediterráneos, como son los filetes de anchoa ( Engraulis encrasicholus), mediante la técnica de sustitución total o parcial del Cloruro sódico (NaCl), por Cloruro potásico (KCl) y/o Cloruro Magnésico (MgCl El trabajo incluyó la realización de diferentes pruebas analíticas, que permitieron dar una mayor visión de las propiedades nutricionales del alimento y de sus aspectos fisicoquímicos. Asimismo se realizó una evaluación de los atributos sensoriales del producto obtenido, recurriendo a catadores no experimentados, con lo que se pretendía conocer el grado de aceptación de los productos obtenidos con bajo contenido en sodio, frente a los tradicionalmente consumidos.).Palabras Clave: Cardiosaludable; sodio; anchoas; potasio; magnesio

    Encapsulation of folic acid in different silica porous supports: A comparative study

    Full text link
    Although folic acid is essential to numerous bodily functions, recent research indicates that a massive exposition to the vitamin could be a double-edged sword. In this study, the capacity of different caped mesoporous silica particles (i.e. Hollow Silica Shells, MCM-41, SBA-15 and UVM-7) to dose FA during its passage through the gastrointestinal tract has been evaluated. Results confirmed that the four capped materials were capable to hinder the delivery of FA at low pH (i.e. stomach) as well as able to deliver great amounts of the vitamin at neutral pH (i.e. intestine). Nevertheless, the encapsulation efficiency and the deliver kinetics differed among supports. While supports with large pore entrance exhibited an initial fast release, MCM-41, showed a sustained release along the time. This correlation between textural properties and release kinetics for each of the supports reveals the importance of a proper support selection as a strategy to control the delivery of active molecules.Authors gratefully acknowledge the financial support from the Ministerio de Economia y Competitividad (Projects AGL2012-39597-C02-01, AGL2012-39597-C02-02 and MAT2012-38429-C04-01) and the Generalitat Valenciana (project PROMETEO/2009/016). E.P. and M.R. are grateful to the Ministerio de Ciencia e Innovacion for their Grants (AP2008-00620, AP2010-4369). Electron Microscopy Service of the UPV is also acknowledged.Pérez-Esteve, É.; Ruiz Rico, M.; De La Torre Paredes, C.; Villaescusa Alonso, LA.; Sancenón Galarza, F.; Marcos Martínez, MD.; Amoros Del Toro, PJ.... (2016). Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry. 196:66-75. https://doi.org/10.1016/j.foodchem.2015.09.017S667519

    Safety evaluation of steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts

    Full text link
    [EN] The EFSA Panel on Food Additives and Flavourings (FAF) provides a scientific opinion on the safety of steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts. These steviol glycoside preparations are produced via enzymatic bioconversion of highly purified stevioside and/or rebaudioside A extracts obtained from stevia plant using two UDP-glucosyltransferases and one sucrose synthase enzymes produced by the genetically modified strains of E. coli K-12 that facilitate the transfer of glucose to purified stevia leaf extracts via glycosidic bonds. The Panel considered that the parental strain is a derivative of E. coli K-12 which is well characterised and its safety has been documented; therefore, it is considered to be safe for production purposes. The Panel concluded that there is no safety concern for steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts using UDP-glucosyltransferases and sucrose synthase enzymes produced by the genetically modified strains of E. coli K-12, to be used as a food additive. The Panel recommends the European Commission to consider the proposal of establishing separate specifications for steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts in Commission Regulation (EU) No 231/2012. (C) 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.Younes, M.; Aquilina, G.; Castle, L.; Engel, K.; Fowler, P.; Frutos Fernandez, MJ.; Furst, P.... (2021). Safety evaluation of steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts. EFSA Journal. 19(8):1-22. https://doi.org/10.2903/j.efsa.2021.669112219

    Safety evaluation of crosslinked polyacrylic acid polymers (carbomer) as a new food additive

    Full text link
    [EN] The EFSA Panel on Food Additives and Flavourings (FAF) provides a scientific opinion on the safety of crosslinked polyacrylic acid polymers (carbomer) proposed for use as food additive in solid and liquid food supplements. Carbomer is formed from the monomer, acrylic acid, which is polymerised and crosslinked with allyl pentaerythritol (APE). The polymers are synthesised in ethyl acetate using as free-radical polymerisation initiator. In vivo data showed no evidence for systemic availability or biotransformation of carbomer. Carbomer does not raise a concern regarding genotoxicity. Considering the available data set, the Panel derived an acceptable daily intake (ADI) of 190 mg/kg body weight (bw) per day based on a no observed adverse effect level (NOAEL) of 1,500 mg/kg bw per day from a sub-chronic 13-week study in rat, applying a compound specific uncertainty factor (UF) of 8. At the proposed maximum use levels, the exposure estimates ranged at the mean from 1.1 to 90.2 mg/kg bw per day and at the p95 from 12.5 to 237.4 mg/kg bw per day. At the proposed typical use level, the exposure estimates ranged at the mean from 0.7 to 60.2 mg/kg bw per day and at the p95 from 10.3 to 159.5 mg/kg bw per day. The Panel noted that the maximum proposed use levels would result in exposure estimates close to or above the ADI. The Panel also noted that level of exposure to carbomer from its proposed use is likely to be an overestimation. Taking a conservative approach, the Panel considered that exposure to carbomer would not give rise to a safety concern if the proposed maximum use level for solid food supplements is lowered to the typical use level reported by the applicant. (C) 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.Younes, M.; Aquilina, G.; Engel, K.; Fowler, P.; Frutos Fernandez, MJ.; Furst, P.; Gürtler, R.... (2021). Safety evaluation of crosslinked polyacrylic acid polymers (carbomer) as a new food additive. EFSA Journal. 19(8):1-26. https://doi.org/10.2903/j.efsa.2021.669312619

    Safety evaluation of long-chain glycolipids from Dacryopinax spathularia

    Full text link
    [EN] The EFSA Panel on Food Additives and Flavourings (FAF) provides a scientific opinion on the safety of long-chain glycolipids from Dacryopinax spathularia (also called AM-1) as a food additive. AM-1 is a purified mixture of long-chain glycolipid congeners obtained by fermentation of the edible non-genetically modified fungus Dacryopinax spathularia. AM-1 glycolipids have very low oral bioavailability and overall available toxicology data do not demonstrate any adverse effects of the proposed food additive. Considering the available data set the Panel established an ADI of 10 mg/kg bw per day based on a range of NOAELs between 1,000 and 1,423 mg/kg bw per day (the highest doses tested), from the reproductive and a prenatal developmental toxicity studies in rats and 90-day studies in rat and dog. At the proposed maximum use levels, the exposure estimates ranged at the mean from 0.01 to 1.07 mg/kg bw per day and at the p95 from 0 to 3.1 mg/kg mg/kg bw per day. At the proposed typical use levels, the exposure estimates ranged at the mean from < 0.01 mg/kg bw per day to 0.23 mg/kg bw per day and at the p95 from 0 to 0.64 mg/kg bw per day. The Panel noted that the highest estimate of exposure of 3.1 mg/kg bw per day (in toddlers) is within the established ADI of 10 mg/kg bw per day and concluded that the exposure to long-chain glycolipids from Dacryopinax spathularia does not raise a safety concern at the uses and use levels proposed by the applicant.Younes, M.; Aquilina, G.; Engel, K.; Fowler, P.; Frutos Fernandez, MJ.; Furst, P.; Gurtler, R.... (2021). Safety evaluation of long-chain glycolipids from Dacryopinax spathularia. EFSA Journal. 19(6):1-28. https://doi.org/10.2903/j.efsa.2021.660912819

    Safety of the proposed amendment of the specifications for enzymatically produced steviol glycosides (E 960c): Rebaudioside D produced via enzymatic bioconversion of purified stevia leaf extract

    Get PDF
    The EFSA Panel on Food Additives and Flavourings (FAF Panel) provides a scientific opinion on the safety of a proposed amendment of the specifications of enzymatically produced steviol glycosides (E 960c) with respect to the inclusion of rebaudioside D produced via enzyme-catalysed bioconversion of purified stevia leaf extract. Rebaudioside D (95% on dry basis) is produced via enzymatic bioconversion of purified stevia leaf extract using uridine diphosphate (UDP)-glucosyltransferase (UGT) and sucrose synthase enzymes produced by the genetically modified yeast K. phaffii UGT-A, that facilitates the transfer of glucose to purified stevia leaf extract via glycosidic bonds. The same enzymes from K. phaffii UGT-A may be used in the manufacturing process of the food additive, rebaudioside M produced via enzyme modification of steviol glycosides from stevia (E 960c(i)). The Panel considered that separate specifications would be needed for this food additive produced via the manufacturing process described in the current application, aligned with those already established for E 960c(i). The Panel concluded that there is no toxicological concern for Rebaudioside D produced via enzymatic bioconversion of purified stevia leaf extract using UDP-glucosyltransferase and sucrose synthase produced by a genetically modified strain of the yeast K. phaffii. However, based on the available data, the Panel could not exclude the possibility that some residual amount of DNA coding for the kanamycin resistance gene could remain in the final product. Should this gene propagate in microbiota due to the presence of recombinant DNA in the final product, this would be of concern. Therefore, the Panel concluded that the safety of Rebaudioside D produced via this enzymatic bioconversion was not sufficiently demonstrated with the available data given that the absence of recombinant DNA was not shown

    Safety evaluation of buffered vinegar as a food additive

    Get PDF
    The EFSA Panel on Food Additives and Flavourings (FAF) provides a scientific opinion on the safety of buffered vinegar as a new food additive. Buffered vinegar is a liquid or dried product prepared by adding sodium/potassium hydroxides (E 524 to E 525) and sodium/potassium carbonates (E 500 to E 501) to vinegar, compliant with European Standard EN 13188:2000 and exclusively obtained from an agricultural source origin (except wood/cellulose). The primary constituents of buffered vinegar are acetic acid and its salts. No biological or toxicological data obtained with the proposed food additive were submitted by the applicant as part of the dossier as, following oral ingestion, buffered vinegar dissociates into the acetic anion and acetate a natural constituent of the diet, and of the human body for which extensive data on their biological effects exist and for which EFSA in 2013 has previously concluded that the establishment of an acceptable daily intake (ADI) is not considered necessary. At the proposed maximum/typical use levels, the mean exposure to buffered vinegar from its use as a food additive expressed as acetic acid equivalents ranged from 8.9 mg/kg body weight (bw) per day in infants to 280.3 mg/kg bw per day in children. The 95th percentile of exposure to buffered vinegar ranged from 27.9 mg/kg bw per day in infants to 1,078 mg/kg bw per day in toddlers. The Panel concluded that there is no safety concern for the use of buffered vinegar as a food additive at the proposed maximum/typical use levels. The Panel could not conclude on the safety for the proposed uses at quantum satis as Group I food additive since the resulting exposure could not be estimated

    Workshop on Regulatory Preparedness for Innovation in Nanotechnology

    Get PDF
    This report summarises the presentations and discussions at the first NanoReg2 Workshop on Regulatory Preparedness for Innovation in Nanotechnology held in Ispra, Italy 5 to 6 October 2017 and attended by approximately 60 regulators, industry representatives and other stakeholders. NanoReg2 is a European Union (EU) Horizon 2020 project. At the workshop, Regulatory Preparedness was defined as the regulators' timely awareness of innovations and the regulator's actions to check whether present legislation covers all safety aspects of each innovation, including initiating revision of the legislation as appropriate. Regulatory Preparedness, and Safe-by-Design (SbD) jointly constitute the NanoReg2 Safe Innovation Approach (SIA) for developing innovative products based on nanotechnology. The workshop aimed to gather views and identify current practices in regulatory work on safety of innovative products, tools already in use or needed, and potential difficulties in implementing Regulatory Preparedness in the EU. Presentations addressed the current state of the safety of nanotechnology innovation. The viewpoints included the regulatory framework, the principles behind it and the agencies and authorities enforcing it; nanosafety research projects and their support system (e.g. the current EU Horizon 2020 Framework Programme); national nanosafety initiatives; and the development of tools, such as foresight tools and harmonised test guidelines by the OECD for data generation. The workshop served to generate ideas for achieving Regulatory Preparedness. The participants recognised that while regulators deal with the safety of innovations, only few systematic approaches to this work exist. Some innovative products may reach the market before their safety has been appropriately assessed, as illustrated by RAPEX, the Rapid Exchange of Information System. A continuous and proactive combination of interconnected activities was considered to be required for ensuring Regulatory Preparedness. Thus, anticipation, e.g. horizon scanning, was seen as important, as was communication between regulators, innovators (industry) and other stakeholders. Regulators need to become aware of innovative products under development to ensure that the legislation and methods for safety assessment are available and adequate. Innovators must be aware of regulatory requirements and their likely development. This mutual awareness helps to develop safe products and to avoid delays or other problems in obtaining market approval. Awareness can be achieved through communication, which requires trust, e.g. promoted via "trusted environments" for confidential inquiries and information sharing. Furthermore, regulators need early access to the existing information and data relevant to safety assessment of innovative products to provide timely guidance and advice to Industry as well as to develop strategies for dealing with uncertainty, e.g. by applying the precautionary principle. Regulatory Preparedness was discussed as part of the SIA, and a "road map" of actions was suggested and outlined. The workshop has thus contributed towards acceptance of implementing Regulatory Preparedness for innovation in nanotechnology through the participation of a variety of stakeholders. This paves the way for a better dialogue among stakeholders in a fast economic development cycle, where it is even more important to quickly identify emerging needs for new approaches to regulatory issues for innovationJRC.F.2-Consumer Products Safet

    Aplicacion de nuevas tecnologias para la elaboracion del turron de Jijona

    No full text
    Antonio Jose Cavanilles 1998 Prize on Scientific and Technical ResearchCentro de Informacion y Documentacion Cientifica (CINDOC). C/Joaquin Costa, 22. 28002 Madrid. SPAIN / CINDOC - Centro de Informaciòn y Documentaciòn CientìficaSIGLEESSpai
    corecore