181 research outputs found

    Experiences of workers with post-COVID-19 symptoms can signpost suitable workplace accommodations

    Get PDF
    The prevalence and multi-system nature of post-COVID-19 symptoms warrants clearer understanding of their work ability implications within the working age population. An exploratory survey was undertaken to provide empirical evidence of the work-relevant experiences of workers recovering from COVID-19. A bespoke online survey based on a biopsychosocial framework ran between December 2020 and February 2021. It collected quantitative ratings of work ability and return-to-work status, qualitative responses about return-to-work experiences, obstacles and recommendations, along with views on employer benefits for making accommodations. A sample of 145 UK workers recovering from COVID-19 was recruited via social media, professional networks and industry contacts. Qualitative data was subject to thematic analysis. Participants were mainly from health/social care (50%) and educational settings (14%). Findings – Just over 90% indicated that they had experienced at least some post-COVID-19 symptoms, notably fatigue and cognitive effects. For 55%, symptoms lasted longer than six months. Only 15% had managed a full return-to-work. Of the 88 who provided workability ratings, just 13 and 18% respectively rated their physical and mental workability as good or very good. Difficulties in resuming work were attributed to symptom unpredictability, their interaction with job demands, managing symptoms and demands in parallel, unhelpful attitudes and expectations. Manager and peer support was reported as variable. Workplace health management characterised by flexible long-term collaborative return-to-work planning, supported bymoreCOVID-centric absence policies and organisational cultures, appear pivotal for sustaining the return-to-work of the large segments of the global workforce affected by post-COVID-19 symptoms

    Distribution of graph-distances in Boltzmann ensembles of RNA secondary structures

    Full text link
    Large RNA molecules often carry multiple functional domains whose spatial arrangement is an important determinant of their function. Pre-mRNA splicing, furthermore, relies on the spatial proximity of the splice junctions that can be separated by very long introns. Similar effects appear in the processing of RNA virus genomes. Albeit a crude measure, the distribution of spatial distances in thermodynamic equilibrium therefore provides useful information on the overall shape of the molecule can provide insights into the interplay of its functional domains. Spatial distance can be approximated by the graph-distance in RNA secondary structure. We show here that the equilibrium distribution of graph-distances between arbitrary nucleotides can be computed in polynomial time by means of dynamic programming. A naive implementation would yield recursions with a very high time complexity of O(n^11). Although we were able to reduce this to O(n^6) for many practical applications a further reduction seems difficult. We conclude, therefore, that sampling approaches, which are much easier to implement, are also theoretically favorable for most real-life applications, in particular since these primarily concern long-range interactions in very large RNA molecules.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Immune Correlates of Protection Against Human Cytomegalovirus Acquisition, Replication, and Disease

    Get PDF
    Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects and an etiology of significant morbidity and mortality in solid organ and hematopoietic stem cell transplant recipients. There is tremendous interest in developing a vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease, yet after nearly a half-century of research and development in this field we remain without such an intervention. Defining immune correlates of protection is a process that enables targeted vaccine/immunotherapeutic discovery and informed evaluation of clinical performance. Outcomes in the HCMV field have previously been measured against a variety of clinical end points, including virus acquisition, systemic replication, and progression to disease. Herein we review immune correlates of protection against each of these end points in turn, showing that control of HCMV likely depends on a combination of innate immune factors, antibodies, and T-cell responses. Furthermore, protective immune responses are heterogeneous, with no single immune parameter predicting protection against all clinical outcomes and stages of HCMV infection. A detailed understanding of protective immune responses for a given clinical end point will inform immunogen selection and guide preclinical and clinical evaluation of vaccines or immunotherapeutics to prevent HCMV-mediated congenital and transplant disease

    Epitope-specific humoral responses to human cytomegalovirus glycoprotein-B vaccine with MF59: Anti-AD2 levels correlate with protection from viremia

    Get PDF
    The human cytomegalovirus (HCMV) virion envelope protein glycoprotein B (gB) is essential for viral entry and represents a major target for humoral responses following infection. Previously, a phase-2 placebo-controlled clinical trial conducted in solid organ transplant candidates demonstrated that vaccination with gB plus MF59 adjuvant significantly increased gB ELISA antibody levels whose titer correlated directly with protection against post-transplant viremia. The aim of the current study was to investigate in more detail this protective humoral response in vaccinated seropositive transplant recipients. We focussed on four key antigenic domains (AD) of gB; AD1, AD2, AD4 and AD5 measuring antibody levels in patient sera and correlating these with post-transplant HCMV viremia. Vaccination of seropositive patients significantly boosted pre-existing antibody levels against the immunodominant region AD1 as well as against AD2, AD4 and AD5. A decreased incidence of viremia correlated with higher antibody titers against AD2 but not with antibody titers against the other three ADs. Overall, these data support the hypothesis that antibodies against AD2 are a major component of the immune protection of seropositives seen following vaccination with gB/MF59 vaccine and identify a correlate of protective immunity in allograft patients

    Dunning rat prostate adenocarcinomas and alternative splicing reporters: powerful tools to study epithelial plasticity in prostate tumors in vivo

    Get PDF
    Using alternative splicing reporters we have previously observed mesenchymal epithelial transitions in Dunning AT3 rat prostate tumors. We demonstrate here that the Dunning DT and AT3 cells, which express epithelial and mesenchymal markers, respectively, represent an excellent model to study epithelial transitions since these cells recapitulate gene expression profiles observed during human prostate cancer progression. In this manuscript we also present the development of two new tools to study the epithelial transitions by imaging alternative splicing decisions: a bichromatic fluorescence reporter to evaluate epithelial transitions in culture and in vivo, and a luciferase reporter to visualize the distribution of mesenchymal epithelial transitions in vivo

    Fox-1 family of RNA-binding proteins

    Get PDF
    The Fox-1 family of RNA-binding proteins are evolutionarily conserved regulators of tissue-specific alternative splicing in metazoans. The Fox-1 family specifically recognizes the (U)GCAUG stretch in regulated exons or in flanking introns, and either promotes or represses target exons. Recent unbiased bioinformatics analyses of alternatively spliced exons and comparison of various vertebrate genomes identified the (U)GCAUG stretch as a highly conserved and widely distributed element enriched in intronic regions surrounding exons with altered inclusion in muscle, heart, and brain, consistent with specific expression of Fox-1 and Fox-2 in these tissues. Global identification of Fox-2 target RNAs in living cells revealed that many of the Fox-2 target genes themselves encode splicing regulators. Further systematic elucidation of target genes of the Fox-1 family and other splicing regulators in various tissues will lead to a comprehensive understanding of splicing regulatory networks

    The CUGBP2 Splicing Factor Regulates an Ensemble of Branchpoints from Perimeter Binding Sites with Implications for Autoregulation

    Get PDF
    Alternative pre-mRNA splicing adjusts the transcriptional output of the genome by generating related mRNAs from a single primary transcript, thereby expanding protein diversity. A fundamental unanswered question is how splicing factors achieve specificity in the selection of target substrates despite the recognition of information-poor sequence motifs. The CUGBP2 splicing regulator plays a key role in the brain region-specific silencing of the NI exon of the NMDA R1 receptor. However, the sequence motifs utilized by this factor for specific target exon selection and its role in splicing silencing are not understood. Here, we use chemical modification footprinting to map the contact sites of CUGBP2 to GU-rich motifs closely positioned at the boundaries of the branch sites of the NI exon, and we demonstrate a mechanistic role for this specific arrangement of motifs for the regulation of branchpoint formation. General support for a branch site-perimeter–binding model is indicated by the identification of a group of novel target exons with a similar configuration of motifs that are silenced by CUGBP2. These results reveal an autoregulatory role for CUGBP2 as indicated by its direct interaction with functionally significant RNA motifs surrounding the branch sites upstream of exon 6 of the CUGBP2 transcript itself. The perimeter-binding model explains how CUGBP2 can effectively embrace the branch site region to achieve the specificity needed for the selection of exon targets and the fine-tuning of alternative splicing patterns

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum β-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (<0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 10 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status. [Abstract copyright: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
    corecore