104 research outputs found

    Log-normal distribution based EMOS models for probabilistic wind speed forecasting

    Get PDF
    Ensembles of forecasts are obtained from multiple runs of numerical weather forecasting models with different initial conditions and typically employed to account for forecast uncertainties. However, biases and dispersion errors often occur in forecast ensembles, they are usually under-dispersive and uncalibrated and require statistical post-processing. We present an Ensemble Model Output Statistics (EMOS) method for calibration of wind speed forecasts based on the log-normal (LN) distribution, and we also show a regime-switching extension of the model which combines the previously studied truncated normal (TN) distribution with the LN. Both presented models are applied to wind speed forecasts of the eight-member University of Washington mesoscale ensemble, of the fifty-member ECMWF ensemble and of the eleven-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service, and their predictive performances are compared to those of the TN and general extreme value (GEV) distribution based EMOS methods and to the TN-GEV mixture model. The results indicate improved calibration of probabilistic and accuracy of point forecasts in comparison to the raw ensemble and to climatological forecasts. Further, the TN-LN mixture model outperforms the traditional TN method and its predictive performance is able to keep up with the models utilizing the GEV distribution without assigning mass to negative values.Comment: 24 pages, 10 figure

    Machine learning for total cloud cover prediction

    Get PDF
    Accurate and reliable forecasting of total cloud cover (TCC) is vital for many areas such as astronomy, energy demand and production, or agriculture. Most meteorological centres issue ensemble forecasts of TCC; however, these forecasts are often uncalibrated and exhibit worse forecast skill than ensemble forecasts of other weather variables. Hence, some form of post-processing is strongly required to improve predictive performance. As TCC observations are usually reported on a discrete scale taking just nine different values called oktas, statistical calibration of TCC ensemble forecasts can be considered a classification problem with outputs given by the probabilities of the oktas. This is a classical area where machine learning methods are applied. We investigate the performance of post-processing using multilayer perceptron (MLP) neural networks, gradient boosting machines (GBM) and random forest (RF) methods. Based on the European Centre for Medium-Range Weather Forecasts global TCC ensemble forecasts for 2002–2014, we compare these approaches with the proportional odds logistic regression (POLR) and multiclass logistic regression (MLR) models, as well as the raw TCC ensemble forecasts. We further assess whether improvements in forecast skill can be obtained by incorporating ensemble forecasts of precipitation as additional predictor. Compared to the raw ensemble, all calibration methods result in a significant improvement in forecast skill. RF models provide the smallest increase in predictive performance, while MLP, POLR and GBM approaches perform best. The use of precipitation forecast data leads to further improvements in forecast skill, and except for very short lead times the extended MLP model shows the best overall performance

    Machine learning for total cloud cover prediction

    Get PDF
    Accurate and reliable forecasting of total cloud cover (TCC) is vital for many areas such as astronomy, energy demand and production, or agriculture. Most meteorological centres issue ensemble forecasts of TCC, however, these forecasts are often uncalibrated and exhibit worse forecast skill than ensemble forecasts of other weather variables. Hence, some form of post-processing is strongly required to improve predictive performance. As TCC observations are usually reported on a discrete scale taking just nine different values called oktas, statistical calibration of TCC ensemble forecasts can be considered a classification problem with outputs given by the probabilities of the oktas. This is a classical area where machine learning methods are applied. We investigate the performance of post-processing using multilayer perceptron (MLP) neural networks, gradient boosting machines (GBM) and random forest (RF) methods. Based on the European Centre for Medium-Range Weather Forecasts global TCC ensemble forecasts for 2002-2014 we compare these approaches with the proportional odds logistic regression (POLR) and multiclass logistic regression (MLR) models, as well as the raw TCC ensemble forecasts. We further assess whether improvements in forecast skill can be obtained by incorporating ensemble forecasts of precipitation as additional predictor. Compared to the raw ensemble, all calibration methods result in a significant improvement in forecast skill. RF models provide the smallest increase in predictive performance, while MLP, POLR and GBM approaches perform best. The use of precipitation forecast data leads to further improvements in forecast skill and except for very short lead times the extended MLP model shows the best overall performance.Comment: 24 pages, 7 figure

    Numerical analysis of life of notched specimens subjected to complex bending with torsion

    Get PDF
    The authors analyzed life of specimens with rectangular sections and with notches (crack initiators). The specimens were loaded by amplitudes of bending and torsional moments, Mg and Ms respectively. The analysis was performed with use of the finite element method and the MSC Patran program using a modulus for fatigue calculations Fatigue. The analysis was done in order to select amplitudes of torsional and bending loading and determine fatigue life of the specimens made of 18G2A steel

    Research studio for testing control algorithms of mobile robots

    Get PDF
    In recent years, a significant development of technologies related to the control and communication of mobile robots, including Unmanned Aerial Vehicles, has been noticeable. Developing these technologies requires having the necessary hardware and software to enable prototyping and simulation of control algorithms in laboratory conditions.The article presents the Laboratory of Intelligent Mobile Robots equipped with the latest solutions. The laboratory equipment consists of four quadcopter drones (QDrone) and two wheeled robots (QBot), equipped with rich sensor sets, a ground control station with Matlab-Simulink software, OptiTRACK object tracking system, and the necessary infrastructure for communication and security.The paper presents the results of measurements from sensors of robots monitoring various quantities during work. The measurements concerned, among others, the quantities of robots registered by IMU sensors of the tested robots (i.e., accelerometers, magnetometers, gyroscopes and others)

    Research studio for testing control algorithms of mobile robots

    Get PDF
    In recent years, a significant development of technologies related to the control and communication of mobile robots, including Unmanned Aerial Vehicles, has been noticeable. Developing these technologies requires having the necessary hardware and software to enable prototyping and simulation of control algorithms in laboratory conditions.The article presents the Laboratory of Intelligent Mobile Robots equipped with the latest solutions. The laboratory equipment consists of four quadcopter drones (QDrone) and two wheeled robots (QBot), equipped with rich sensor sets, a ground control station with Matlab-Simulink software, OptiTRACK object tracking system, and the necessary infrastructure for communication and security.The paper presents the results of measurements from sensors of robots monitoring various quantities during work. The measurements concerned, among others, the quantities of robots registered by IMU sensors of the tested robots (i.e., accelerometers, magnetometers, gyroscopes and others)

    Comparison of multivariate post-processing methods using global ECMWF ensemble forecasts

    Get PDF
    An influential step in weather forecasting was the introduction of ensemble forecasts in operational use due to their capability to account for the uncertainties in the future state of the atmosphere. However, ensemble weather forecasts are often underdispersive and might also contain bias, which calls for some form of post-processing. A popular approach to calibration is the ensemble model output statistics (EMOS) approach resulting in a full predictive distribution for a given weather variable. However, this form of univariate post-processing may ignore the prevailing spatial and/or temporal correlation structures among different dimensions. Since many applications call for spatially and/or temporally coherent forecasts, multivariate post-processing aims to capture these possibly lost dependencies. We compare the forecast skill of different nonparametric multivariate approaches to modeling temporal dependence of ensemble weather forecasts with different forecast horizons. The focus is on two-step methods, where after univariate post-processing, the EMOS predictive distributions corresponding to different forecast horizons are combined to a multivariate calibrated prediction using an empirical copula. Based on global ensemble predictions of temperature, wind speed and precipitation accumulation of the European Centre for Medium-Range Weather Forecasts from January 2002 to March 2014, we investigate the forecast skill of different versions of Ensemble Copula Coupling (ECC) and Schaake Shuffle (SSh). In general, compared with the raw and independently calibrated forecasts, multivariate post-processing substantially improves the forecast skill. While even the simplest ECC approach with low computational cost provides a powerful benchmark method, recently proposed advanced extensions of the ECC and the SSh are found to not provide any significant improvements over their basic counterparts.Comment: 27 pages, 13 figure

    Post-processing numerical weather prediction ensembles for probabilistic solar irradiance forecasting

    Get PDF
    In order to enable the transition towards renewable energy sources, probabilistic energy forecasting is of critical importance for incorporating volatile power sources such as solar energy into the electrical grid. Solar energy forecasting methods often aim to provide probabilistic predictions of solar irradiance. In particular, many hybrid approaches combine physical information from numerical weather prediction models with statistical methods. Even though the physical models can provide useful information at intra-day and day-ahead forecast horizons, ensemble weather forecasts from multiple model runs are often not calibrated and show systematic biases. We propose a post-processing model for ensemble weather predictions of solar irradiance at temporal resolutions between 30 min and 6 h. The proposed models provide probabilistic forecasts in the form of a censored logistic probability distribution for lead times up to 5 days and are evaluated in two case studies covering distinct physical models, geographical regions, temporal resolutions, and types of solar irradiance. We find that post-processing consistently and significantly improves the forecast performance of the ensemble predictions for lead times up to at least 48 h and is well able to correct the systematic lack of calibration
    corecore