53 research outputs found
Applicable anode based on Co3O4–SrCO3 heterostructure nanorods-incorporated CNFs with low-onset potential for DUFCs
Besides the high-current density, lower onset potential of urea electrooxidation is key parameter which influences the direct urea fuel cell performance. In the present article, low-onset potential has been reported for nickel-free (NF) electrocatalyst in urea electrooxidation. The nickel-free electrocatalyst: Co3O4–SrCO3 heterostructure nanorods-incorporated carbon nanofibers (CNFs) were synthesized by electrospinning technique, followed by calcination of electrospun mat composed of strontium acetate, cobalt acetate, and poly(vinyl alcohol) sol–gel in inert environment at 750 °C. Physiochemical characterizations confirmed the formation of Co3O4–SrCO3 heterostructure nanorods-incorporated CNFs. The electrochemical activity of resultant nickel-free electrocatalyst toward the electrooxidation of urea in alkaline medium is evaluated using cyclic voltammetry measurements (CV). Co3O4–SrCO3 heterostructure nanorods-incorporated CNFs reveals high-current density of 21.33 mA/cm2 at low-fuel concentration. Notably, the low-onset potential has been observed, showing a good application prospect in direct urea fuel cells.This Publication was made possible by NPRP grant # [8-1344-1-246] from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of authors
Oxidative stress markers and antioxidant potential of wheat treated with phytohormones under salinity stress
The interactive effects 0.5 mM indole acetic acid or 0.1 mM of salicylic acid as shoot spraying on NaCl wheat stressed plant organs (spike, shoot and root) grown in pot experiment under different salinity levels (0, 50, 100, 150 and 200 mM NaCl) were studied. The antioxidant enzymes as catalase, peroxidase and ascorbate peroxidase, photosynthetic pigments, reducing sugar, proteins, amino acids, and proline contents in spike, shoot and root of salinity stressed plants were the most affected parameters specially at high salinity levels (150-200 mM NaCl).Treatments with 0.5 mM indole acetic acid or 0.1 mM of salicylic acid as shoot spraying on NaCl wheat stressed plant organs mitigated the harmful effect of NaCl. To conclude the phytohormone indole acetic acid or salicylic acid improved salt tolerance in stressed wheat by significantly activated catalase, peroxidase, and ascorbate peroxidase, increased photosynthetic pigments and enhancing the accumulation of nontoxic metabolites (sugars, proteins, amino acid and free proline) as a protective adaptation mechanism in different wheat organs. However, the magnitude of increase was more pronounced in salicylic acid treated plants than in indole acetic acid treated ones, and the spike was more accumulator organ of non toxic metabolites compared to shoot and root. Thus salicylic acid and/or indole acetic acid treatments prevents the deleterious effects of salinity stressed wheat and could be adopted as a potential growth regulator or antioxidant to improve growth particularly under moderate NaCl salinity levels, wheat plant respond positively to SA foliar application than IAA application
Engineering of nickel based catalyst for direct urea fuel cell-energy from municipal liquid waste (Mlw)
Alternatives to conventional fuels are required to meet the global energy demand, urea is a relatively non-toxic crystalline substance that is perhaps best known for its presence in municipal liquid waste (MLW) and human/animal urine. Urea has a high energy density compare to compressed/liquid hydrogen, hence is useful as an alternative energy vector for direct urea fuel cell. Luckily, urea-based fuel cells are operated in alkaline medium which offers good chance for the non-precious transition metals to be invoked as anode material due to the good chemical stability. Moreover, compared to noble metals, nickel catalysts showed higher current densities and lower oxidation potentials for the electrooxidation of urea. Consequently, this chapter details the study of physicochemical and electrochemical properties of two novel nickel based nanomaterials for direct urea fuel cells, together with their brief synthesis procedures. - 2019 by Nova Science Publishers, Inc.Scopu
- …